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ambient. Regardless of the initial degree of turbulent 
kinetic energy, such wakes eventually evolve into a state 
dominated by low Froude number dynamics with persis-
tent patterns and, therefore, are of special interest to both 
predictive geophysical studies and potential signal/pattern 
detectors (Spedding 2014).

Overall, a simple 3-stage model [3D-NEQ-Q2D; Sped-
ding (1997)] can satisfactorily account for a number of 
late wake characteristics, and various modifications have 
been proposed to include experimental (Bonnier and Eiff 
2002) and theoretical (Meunier et al. 2006) considerations. 
Though the experimental fits seem effective, the theoretical 
model does not scale in the same way with Froude num-
ber, and there is some dispute about how and whether these 
mechanisms could be universal, and when and if the evolu-
tion could be independent of initial conditions. For exam-
ple, in columnar vortex pairs, zigzag modes drive the tran-
sition to vertical layering (Billant and Chomaz 2000) with 
set vertical length scales (Billant 2010; Billant et al. 2010). 
However, when the initial state is turbulent, there is no ini-
tial coherence in vertical direction. Pattern and structure in 
the horizontal or isopycnal plane behind both streamlined 
and bluff bodies can be traced to KH-type pairing–merging 
mechanisms (Spedding 2001, 2002).

In many geophysical flows, with characteristic length 
and velocity scales, L and U, the Reynolds number 
Re = UL/ν characterizes the relative timescales associ-
ated with inertial-scale and viscous-scale events, and an 
internal Froude number Fr = U/NL characterizes advec-
tive vs. buoyancy timescales (the buoyancy frequency N 
is the natural oscillation frequency due to background 
density variation). Since L on the scale of geography is 
large, it is common for Re ∼ 108, while Fr = O(1), which 
immediately tells us two things: (1) stratification is always 
important in the free evolution of L-scale disturbances; (2) 
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fer to larger scales in the near wake, as the initial shear-
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neighbors. Finally, this paper serves as a detailed example 
of the application of DMD to time-resolved particle imag-
ing velocimetry data for a stratified flow. The results con-
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ferent scales of complex fluid flows.

1  Introduction

Since the evolution of a wake in a stable background den-
sity gradient is restricted by stratification, the dynamics 
differ significantly from its counterpart in a homogeneous 
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at least at first, while Re remains high, then the dynami-
cal regime will be one in which buoyancy is influential and 
at the same time viscosity is not. This strongly-stratified 
turbulent regime is sometimes described by a buoyancy-
Reynolds number, Reb ∼ Re · Fr2, and when Reb >> 1 one 
expects and observes that non-equilibrium conditions last 
significantly longer (Meunier et al. 2006; Diamessis et al. 
2011), and the driving dynamics of the inertial-driven but 
buoyancy-controlled flows are more complex than in vis-
cous-controlled motions (Riley and de  Bruyn  Kops 2003; 
Hebert and de Bruyn Kops 2006).

Two limitations are driving experimental studies to ear-
lier times in stratified turbulence evolution. There is some 
natural limit in L in any facility, and so turbulence must 
be associated with large U. There is also a limit on maxi-
mum N and conditions of high-U, high-N (and hence low 
Fr) can be found only in early evolution times, when the 
flow is strongly three-dimensional. In fact the existence of 
the notional 3D stage, where the dynamics at some range of 
scales occurs mostly unaffected by ambient stratification, 
has been largely a matter of conjecture because strong vari-
ations in the density fields make measurement by optical-
based methods difficult.

Recent experiments in a refractive index matched fluid 
(Xiang et  al. 2015) have provided measurements of the 
near wake of localized grid turbulence over the 3D to NEQ 
transition in a turbulent wake, as have direct numerical sim-
ulations for sphere wakes (Orr et  al. 2015), and it is now 
possible to search for appropriate quantitative measures to 
describe and compare effects of initial and boundary con-
ditions at early times, when it is quite unlikely in many 
instances that some universal or self-similar state will have 
been reached. Near wakes can be shown to exhibit a variety 
of flow modes whose formation depends not only on the 
combination of Re and Fr, but also on the body geometry 
or generator conditions, and a number of experiments on 
towed spheres have demonstrated lee waves, spiral modes, 
KH modes, vertical oscillation modes, and more at differ-
ent Re and Fr (Lin et al. 1992; Chomaz et al. 1993). These 
structural components have distinct time and length scales 
that are related to particular physical processes, and modal 
analyses may be employed to isolate and decompose the 
near-wake field along its most energetic, or dynamically-
significant modes.

Proper orthogonal decomposition (POD) is a commonly 
used method to compute orthogonal modes that optimally 
capture the vector energy of a data set and hence can effi-
ciently extract coherent structures and may also reconstruct 
flow fields with a low-order representation (Holmes et  al. 
2012). By using physical space-based basis functions that 
are not necessarily time-periodic or space-filling, one can 
account for localized features such as turbulence patches 
(Lumley 2007; Berkooz et  al. 1993). Some applications of 

POD have included stratified turbulent patches (Diamessis 
et al. 2010), free shear flows (Gordeyev and Thomas 2000, 
2002), and boundary layer flows (Gurka et  al. 2006). This 
method, though appealing, suffers from a certain limitations 
(Schmid 2010; Chen et al. 2012). First, POD may not suc-
cessfully isolate flow modes with different frequencies or 
growth rates. Second, there is not a clear relation between 
the energy of a mode and its importance in the dynamics. For 
instance, some flows exhibit low-energy modes that trigger 
instabilities and are, therefore, dynamically quite important.

Dynamic mode decomposition (DMD) (Schmid 2010) 
is a data-based modal decomposition method that com-
putes Koopman modes of nonlinear systems (Rowley et al. 
2009) from experimental or numerical time series (Schmid 
2010, 2011), where the nonlinear dynamics are fit to a lin-
ear model. An example of applying DMD to time-resolved 
tomographic PIV data is provided by Schmid et al. (2012). 
DMD yields modes that have physically meaningful growth 
rates and frequencies given by the magnitude and phase of 
corresponding discrete-time eigenvalues. As a result, flow 
features with distinct frequencies can be effectively decou-
pled, but those without distinct patterns, as in some exam-
ples of turbulence, may not be fully characterized. In addi-
tion, growth rates describe the evolution of corresponding 
modes and allow the identification of unstable modes even 
if they have low energy in the data.

This paper applies DMD to time-resolved PIV data 
measured in the vertical center-plane of the near-wake 
generated by a towed grid in a linearly density-stratified 
medium. Unlike the experiments of Schmid et  al. (2012), 
where both the flow field reference and cameras are fixed 
in lab reference, here the grid reference is moving with 
respect to the cameras, which is also the case in many wake 
experiments. The ultimate objective is to investigate strati-
fication effects on the initiation and early-time evolution 
of different frequencies and length scales, as well as the 
energy transfer between them. The dynamics in this regime 
may then shed some light on how it is that coherent struc-
tures emerge from a (possibly turbulent) near wake.

2 � Methods

2.1 � Experimental methods

Experiments were conducted by horizontally towing a cir-
cular grid of radius R =  4  cm with square mesh spacing 
M = 3.2 mm and solidity S = 26% in a (0.8 m)3 tank, as 
sketched in Fig. 1.

The grid orientation was maintained using tow and sup-
port wires, both attached at opposite sides of the grid so 
that the measurement in the vertical center-plane would 
not be directly disturbed at early times. The grid was towed 
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at speeds U = {6.8, 14.3, 27.6} cm/s through the field of 
view (FOV), which was of length 5.5R and height 4.75R. 
Data collection began after a grid displacement of 5R to 
reduce transient effects. The average kinematic viscosity 
in the stratified wake region was ν ≈ 1.005× 10−6 m2/s , 
so the Reynolds numbers Re := UR/ν were 
{2700, 5700, 11, 000} . The Brunt-Väisälä frequency is 
defined as N :=

√
(−g/ρ0) (∂ρ/∂z), where g is the gravita-

tional acceleration, ρ0 is a reference density, and ∂ρ/∂z < 0 
is the background density gradient against the direction of 
gravity. N ranged from 0.2 to 2.8 rad/s, so the Froude num-
bers Fr := U/(NR) were {0.6,  1.3,  2.4,  4.7,  9.1}. If one 
computes Re and Fr based on mesh spacing, the results will 
scale accordingly with a factor of 0.08.

All three components {u, v,w} of velocity in the verti-
cal x–z center-plane were estimated using stereoscopic 
PIV with a sampling rate of 20  Hz. The resolution of 
the measured velocity field is {32, 48, 64} pixels for 
Re  =  {2700,  5700,  11,000}, respectively. At a constant 
optical conversion of 11.75 pixels/mm, this yields a resolu-
tion of {2.7, 4.1, 5.4} mm for each case. To reduce optical 
distortions due to sharp, irregular, and time varying density 
gradients at early times, a refractive index matching (RIM) 
technique was employed as detailed in Xiang et al. (2015).

2.2 � Dynamic mode decomposition

Here a practical means of computing a DMD in a time resolved 
PIV or simulation sequence is given. The singular value 
decomposition (SVD) method, presented by Schmid (2010) 
and further discussed by Chen et al. (2012), is followed.

Suppose a series (either temporal or spatial) of velocity 
fields from m + 1 snapshots, the vector fields can be rear-
ranged and each numerically represented by a 1D column 
vector xk for k = 0, . . . ,m. DMD identifies complex Ritz 
values {�j}mj=1 and complex Ritz vectors {vj}mj=1 such that 

 Therefore, vj represents the vector of jth flow mode. The 
idea of performing this decomposition is to approximate 
the nonlinear dynamics with linear combinations of Ritz 
vectors vj; the evolution from one snapshot to the next, 
and the stability of each mode can be described by the 
magnitude and phase of Ritz values �j, and the residual 
is summarized in r. The decomposition is unique if and 
only if {�j}mj=1 are distinct and {xk}m−1

k=0  are linearly inde-
pendent (Chen et  al. 2012), which is usually true for 
evolving wakes. The first m data vectors are represented 
exactly by a linear combination of Ritz vectors, whereas 
the last data vector contains the residual vector r orthogo-
nal to the span of {xk}m−1

k=0 , and is hence minimized (Row-
ley et al. 2009).

Below we explain the mathematical procedure to com-
pute �j and vj. First, (1a) can be written in matrix form as

where

is the eigenvector matrix and

is a Vandermonde matrix. Let c :=
[

c0 . . . cm−1

]T be the 
vector of coefficients that fit xm to all other data vectors 
in a least squares sense, so that

Then, the companion matrix C can be defined as

such that the index-shifted matrix Kp :=
[

x1 x2 . . . xm
]

 is

(1a)xk =
m
∑

j=1

�
k
j vj, k = 0, . . . ,m− 1

(1b)xm =
m
∑

j=1

�
m
j vj + r, r ⊥ span{x0, . . . , xm−1}.

(2)K :=
[

x0 x1 . . . xm−1

]

= VT,
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Fig. 1   Sketch of the lab experimental setup: a view from above; b 
view from camera side
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The Vandermonde matrix T and companion matrix C are 
related in that T diagonalizes C as

where � is a diagonal matrix with {�j}mj=1 on the diagonal. 
Hence, the eigenvalues of C are the Ritz values, and Ritz 
vectors can be recovered from (2) by V = KT

−1.
The eigendecomposition of the companion matrix can 

be ill-conditioned in practice, so we employ the SVD algo-
rithm introduced by Schmid (2010). Assume K is full-rank 
and K = U�W

∗ is the SVD of K, with (·)∗ denoting the 
complex conjugate. From the properties of SVD, U∗

U = I , 
and W∗

W = WW
∗ = I. Furthermore, since K and U span 

the same subspace, U∗
r = 0. Substituting the SVD and (8) 

into  (7), and left-multiplying by U∗ and right-multiplying 
by W�−1, we obtain

Therefore, the Ritz values are the eigenvalues of 
U
∗
Kp ·W�−1. The reason for this step is that U, � and W∗ 

can be easily calculated from the data matrix K, while C 
is unknown. Furthermore, the use of the SVD of K in  (2) 
yields V = U�W

∗
T
−1. Denoting the eigenvector matrix 

Y := �W
∗
T
−1, it is then apparent that V = UY. Note that 

when computing the eigendecomposition in (9), the eigen-
vectors (that is, the columns of Y) need to be scaled appro-
priately so that V = UY satisfies (2). If K is rank-deficient, 
then U, � and W can be truncated to dimension rank(K), 
and the same algorithm can still be implemented to produce 
fewer modes (Schmid 2010).

2.3 � Data reconfiguration for temporal and spatial 
analyses

In the experiments, the cameras are fixed in the lab ref-
erence, and the grid passes through this fixed FOV. The 
velocity field is, therefore, both temporally and spatially 
varying, so rearrangement of the data is needed for DMD 
calculation.

(8)C = T
−1�T,

(9)
U
∗
KpW�−1 = (�W

∗
T
−1)�(TW�−1)

= (�W
∗
T
−1)�(�W

∗
T
−1)−1.

For temporal analysis, each data vector xk is con-
structed by extracting a velocity field from half of the 
FOV, at a fixed x/R range in the grid reference frame, as 
sketched in Fig.  2 with a dashed line box. That is, sup-
pose that the streamwise span of the FOV is LR for some 
L, and behind the grid the upstream extent of the veloc-
ity data is x/R = a for some a (because the area behind 
the grid is shaded by the grid, the data are not immedi-
ately available, see Fig.  3b). We arrange the data with 
x/R ∈ [a, a+ L/2] column-wise into vectors

where u
tj
i  indicates a vector of velocities in the grid ref-

erence frame at time tj at downstream distance x/R = xi , 
with spacing �x = xi+1 − xi, as sketched in Fig.  2. In 
this paper xi denotes the distance downstream of the grid, 
while bold xi denotes the data vector, and the final data 
matrix K is constructed from xi as in (2).

The matrix K for spatial analysis is configured slightly 
differently, as velocities in each xi should correspond to 
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Fig. 2   Sketch of the data recon-
figuration
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Fig. 3   The flow at Fr = 1.3, Re = 2700 in the lab reference 
[replotted from data originally shown in Xiang et  al. (2015)]. a 
Mean streamwise velocity field u/U, with minimum contour level 
|c|min = 0.06 and contour spacing �c = 0.06. b Instantaneous verti-
cal velocity field (w− w)/|U|, with |c|min = 0.04 and �c = 0.02, and 
w being the mean vertical velocity. The shaded area is not accessible 
to cameras, and the gray contours indicate negative values
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the same x coordinate instead of time. The rearrangement 
can, therefore, be written as

3 � Results

3.1 � Wake structures

A statistical description of the grid near-wake characteris-
tics has been given (Xiang et al. 2015), in which the most 
obvious features were the lee waves and Kelvin–Helmholtz 
(KH) billows. The lee waves are identified in the mean 
streamwise velocity field (Fig. 3a).

Fluid particles vertically displaced by the grid tend to 
restore their balanced positions, resulting in the contraction 
in the contour plot that moves with the grid. The dense iso-
contours at the wake edge also indicate strong shearing that 
can trigger KH instabilities, as seen in the fluctuating verti-
cal velocity field (Fig. 3b), where bands of alternating-sign 
contours move at some local speed. The two-shear-layer 
structure in the near wake also resembles that observed in 
the turbulent wake of a mesh strip in homogeneous ambient 
(Huang and Keffer 1996).

Though these features can be visualized using statistical 
analysis, the quantification of the their evolution, particu-
larly with regard to the KH modes, remains challenging 
and can benefit from a careful examination by DMD, where 
the mode extraction is systematically applied, and the evo-
lution procedure is represented by eigenvalues.

3.2 � Temporal DMD: non‑oscillatory mode

In the near wake, self-similarity is neither expected nor 
observed, and in these stratified cases, it is also clear that 
a local wake height, for example, is primarily set by the 
lee wave, whose amplitude varies with Fr. We now investi-
gate how the dynamics can be characterized by a temporal 
DMD analysis. Taking the case of Re = 2700 and Fr = 1.3 
as an example, the Ritz values and scaled mode energies 
for a near-wake window in x are plotted in Fig. 4.

The total number of accessible modes depends on 
the number of independent snapshots containing the 
specified x/R range and is about 15 for Re = 2700, 8 for 
Re = 5700, and 4 for Re = 11, 000 as the grid moves 
quickly through the FOV. Because the flow structure 
behind the grid is relatively simple, this number of modes 
is likely sufficient to capture the dominant dynamics, and 
the residual term ‖r‖ is only less than 2% of ‖xm‖ for all 
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cases. The importance of a given mode is indicated by 
both ‖�‖ and ‖v‖, so in Fig. 4b, we plot the quantity

with � · �F indicating the Frobenius norm. The quan-
tity |�|m�v� can be interpreted as the contribution of 
the given mode in the reconstruction of the final snap-
shot xm, which is then scaled by the average data norm 
�[K xm]�F/

√
m+ 1. Denoting the frequency and angular 

speed of the jth mode by fj and ωj, the Strouhal number 
of the jth mode can be calculated from

where �t = 0.05 s is the time interval between consecu-
tive snapshots.

All modes are either almost on, or within the unit cir-
cle, as the wake is temporally neutrally stable. The mode 
with highest St consists of mostly random small-scale 
fluctuations, and its magnitude varies greatly depending 
on the selected x/R range and particular {Re, Fr} combina-
tion. Otherwise, it is usually the three or four modes with 
the lowest St that have relatively large mode energies and 
delineate certain near-wake flow patterns, while the higher 
St modes are higher-order harmonics. The mode with 
St = 0 is closely associated with the mean flow and domi-
nates the reconstruction of the snapshots, containing almost 
100% of the mode energy as the background flow velocity 
is an order of magnitude larger than the fluctuating veloci-
ties. We call it the non-oscillatory mode from here on to 
distinguish it from modes with non-zero frequencies.

Since DMD is conducted for data with streamwise 
ranges of x/R ∈ [a, a+ L/2], [a+ L/2, a+ L], . . . sepa-
rately, the Ritz vectors corresponding to the non-oscillatory 
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Fig. 4   a The Ritz values and b scaled mode energies for Fr = 1.3,  
Re = 2700, and x/R ∈ [0.37, 3.04]. Darker color in (a) indicates 
larger ‖v‖, with � · � denoting the l2 norm. Modes with negative St 
are omitted in (b) as they are symmetric about the vertical axis. Two 
modes with very small energy have been omitted from (b). The large 
solid black dot corresponds to the first mode with St = 0
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mode in each sub-domain are spatially concatenated, and 
Fig.  5 plots the ensemble averaged vertical velocity and 
vorticity for this mode over 16 runs. Though the relation 
between the first mode and statistical mean has not been 
mathematically demonstrated, they seem to agree well on 
the lee wave characteristics. For instance, the half wave-
length, marked by the vertical line at the first trough, has 
the same value in the non-oscillatory mode as in the ensem-
ble average.

3.3 � Temporal DMD: oscillatory modes and energy 
distribution

Based on the mode energy spectrum (e.g. Fig.  4), the 
energy contained in the first three oscillatory modes up to 
St ≈ 1.5 is generally larger than that in the higher-order 
harmonics. The vertical velocities corresponding to the four 
lowest St modes in Fig. 4b, which also contain much higher 
energy than the remaining modes, are shown in Fig. 6.

The lee wave can be clearly identified in  Fig.  6a. The 
wavelength of the alternating-sign contours measured 
in Fig. 6d is about 0.6R, which matches closely with that 
measured in Fig. 3b, indicating the mode around this St is 
associated with the initial small-scale KH mode. The St of 
this mode varies only a little with Re. The first oscillatory 
mode (Fig. 6b) corresponds to larger-scale motions which 
can be less organized, especially at later times. The inverse 
relationship between the length scale of the vortex structure 

in each mode and St is also clear in Fig. 6, since the length 
scale becomes smaller when St increases, as expected.

Since the recording time of all cases is the same, the 
spatial range is larger for higher Re. Therefore, here we 
use Re = 11, 000, Fr = 2.4 as an example to study the 
evolution of the oscillatory modes over a relatively long 
distance. The energy in lower-order modes is shown 
in Fig.  7a for one particular x/R range, across all runs. 
There is no clear and persistent peak in St, nor a strict 
value of St that divides neighboring clusters of points 
in all x/R ranges and in all cases. By plotting the scaled 
mode energies for all x/R ranges, one finds that the point 
clusters not only change magnitude, but also gradually 
move towards smaller St with increasing distance down-
stream. Individual modes could be tracked to investigate 
their length scale and energy change with x/R. How-
ever, here in order to globally and statistically describe 
the energy redistribution during the wake evolution and 
to compare over varying Fr, boundaries are manually 
set at St = 0.5 and 0.9 to space the range of St evenly 
in [0.1,  1.3], as marked in Fig.  7a. Note that, though 
Fig.  7a has about the same x/R range as Fig.  6b–d, the 
mode structures may not be exactly the same since the Nt 
ranges are very different. The total energy contained in 
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Fig. 6   Real part of w/U of (a) non-oscillatory mode, (b) oscillatory 
mode 1, (c) mode 2, and (d) mode 3, for Re = 2700, Fr = 1.3, at 
x/R ∈ [0.37, 3.04],
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each bucket can then be calculated by ensemble-averag-
ing the scaled energy of all modes in that St range, nor-
malized by the mean energy of one snapshot. Hence

where {Ei} is the set of mode energies with corresponding 
Ritz values within the given St range for all runs, and nr 
is the number of runs.

The evolution of Etot for the three St ranges is shown 
in Fig.  7b. The high St mode energy quickly decays as 
the initial small-scale KH rolls diffuse and intermittently 
merge with neighboring ones, forming medium-scale 
rolls of moderate St [e.g. Fig.  3 in Xiang et  al. (2015); 
Huang and Keffer (1996)], the energy of which increases 
accordingly further downstream. As they further evolve, 
large-scale low-frequency rolls—as well as vortices that 
likely exist in the horizontal plane but cannot be seen by 
the current PIV setup—start to take over, so the energy 
of low St modes dominates in the far wake. This process 
is consistent with an inverse energy transfer in the ver-
tical center-plane at early times. In turbulence energy 
can always decay towards the Kolmogorov scale (direct 
energy transfer), so a simultaneous transfer to larger 
scales implies a coexistence of direct and inverse energy 
transfer in the near wake, as observed in unstratified (i.e. 
very high Fr) porous wakes by Huang and Keffer (1996).

The stratification effects on the near-wake structures 
can then be investigated by comparing the energy compo-
nents at varying Fr, as shown in Fig. 8 for Re = 2700 and 
11,000. At Re = 2700, though not strictly monotonic, there 
is a general trend of increasing energy contained in all St 
ranges with Fr, as the experimentally resolved length scales 
are less suppressed by stratification at larger Fr. The evo-
lution of different St modes for each case should proceed 

(14)Etot =
(m+ 1)

∑

i Ei

nr�[K xm]�2F
,

much as previously described if the effective observation 
distance is sufficiently long.

The Fr-dependence of the energy distribution is quite 
different for Re = 11, 000, where the Reynolds num-
ber appears to be large enough to stimulate large-scale 
motions immediately in the near wake at large Fr, where 
buoyancy forces are comparatively weak. Most of the 
energy is found in low St modes at large Fr, while the 
energy of higher St modes remains low. If initial KH bil-
lows start at a natural frequency (small scale and there-
fore a high St) across all Fr, then the high energy of low 
Fr modes at large Fr could follow a rapid pairing of small 
eddies in the near wake. Meanwhile, at low Fr, strong 
stratification tends to keep the flow organized by con-
straining the vortex growth and pairing, therefore retain-
ing more energy in smaller scales and for longer dis-
tances. The same inhibition effect of the stratification on 
the growth of KH billows and the pairing of the primary 
instability is also reported in two-layer shear flow experi-
ments (Lawrence et  al. 1991) and simulations (Smyth 
2003). The reason for the different Fr-dependence of 
energy distribution between Re = 2700 and Re = 11, 000 
is not entirely clear, but a possible explanation is that the 
flows at these two Re are in different dynamic regimes, as 
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indicated by a buoyancy Reynolds number Reb ∼ ReFr2, 
and discussed in our previous paper (Xiang et al. 2015).

3.4 � Comparison between temporal and spatial analyses

Hydrodynamic stability theory typically distinguishes spa-
tial analysis from temporal analysis (Schmid and Henning-
son 2001). In certain circumstances [e.g. Schmid (2010)], 
the physical interpretations of both can be equivalent for 
the same data set. In this study, however, though the near-
wake features are temporally stable, the spatial modes can 
still grow unstably as the KH billows develop.

The Strouhal number in spatial analysis is computed 
slightly differently from  (13). Since �x is the distance 
between neighboring vertical slices, Imag{ln(�j)} can 
be treated as the change in phase angle over a displace-
ment �x. We define the spatial Strouhal number to be the 
ratio between the characteristic length scale and the local 
structural length scale. Thus, it can be calculated as

where kj and lj are the wavenumber and wavelength of 
the jth mode, respectively. Note that kju = ωj, where u 
denotes the velocity in which the local structures move 
with respect to the grid, so (13) is related to (15) by

Since local structures actually move at a speed smaller 
than the towing speed—i.e., u < U—the Strouhal 
number in spatial analysis differs from that in tempo-
ral analysis by a small factor for the same flow pattern 
in the very near wake. However, this difference soon 
diminishes as the local speed with respect to the grid is 
quickly accelerated by the mean flow to u ≈ U, such that 
Stj ≈ Stsj = R/lj . Once this has occurred, the length scale 
estimated by temporal analysis is a good approximation.

A subset of the Ritz values and scaled mode energies 
of the spatial modes for Re = 2700, Fr = 1.3 is shown in 
Fig. 9.

The mode with Sts = 1.72, marked by solid black dot, 
corresponds to a length scale of l = R/Sts = 0.58R, which 
closely matches with that in Fig. 3b and the correspond-
ing temporal analysis. This mode is, therefore, related to 
the KH instability and is weakly unstable in the very near 
wake as KH instability gradually develops. This mode 
slowly decays at later times, since all modes are inside 
the unit circle in Fig. 9b. Contours of w/U of this mode 
are shown in Fig. 9d. The roll-up structure can be clearly 
identified, and evolves through more than 3 periods in the 
observation window of 1.35 s. Therefore, (13) computes 

(15)Stsj :=
R

lj
=

kjR

2π
=

Imag{ln(�j)}R
2π�x

,

(16)Stj =
ωjR

2πU
=

kjuR

2πU
=

u

U
Stsj .

St ≈ 1.3 in temporal analysis, compared with Sts = 1.72 
in spatial analysis.

Most of energy can be found in the first 6 or 7 modes 
up to Sts ≈ 1.9, as can be seen in  Fig.  9c. The vertical 
velocity fields of Mode 1, 2, 3, and 5 (the four modes 
with highest energy in Fig. 9c) are shown in Fig. 10.

The lee wave mode differs from other wake modes in 
that it moves with the grid; hence, the speed with respect to 
the grid is u = 0, and Stj = 0 �= Stsj. In the spatial analysis, 
the lee wave is recognized as a low-frequency wave mode 
with Sts = 0.12 in the above example and contains more 
energy than other modes. Because the lee wave moves at 
the same speed as the grid, the vertical velocity at a given 
z/R is almost constant at any time t, as shown in Fig. 10a, 
and then its magnitude and phase changes with space. 
The result of Sts = 0.12 = R/l also agrees well with the 
wavelength l/R = 2πFr ≈ 8.2 based on linear theory and 
experimental measurements (Chomaz et  al. 1993; Xiang 
et al. 2015). In general, the spatial analysis can closely esti-
mate the lee wave wavelength for low Fr cases, but will fail 
for higher Fr when the half-field of each single snapshot is 
too short for DMD to make a correct estimate; see Chen 
et al. (2012) for additional discussions on short time series. 
As Sts increases, the time needed for the oscillatory mode 
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to evolve through one period decreases, as can be seen 
from Fig.  10b–d. This indicates a decreasing length scale 
with Sts, as expected since lj = R/Stsj, consistent with tem-
poral analysis.

4 � Conclusion

Dynamic mode decomposition has been applied to exper-
imental data of stratified wakes generated by a towed grid 
over Nt < 10, for a range of Froude and Reynolds num-
bers. The decomposition successfully captures lee wave 
and vortical modes of different length scales in the near 
wake. It also provides a means of quantifying the kinetic 
energy contained in different structures, thus providing 
insight into Froude number effects on the early time wake 
evolution.

In the near wake, the initial KH billows are triggered 
by strong shear at the wake edge. They evolve through 
diffusion and pairing into large-scale rolls, and DMD 
identifies an energy spectrum with an inverse energy 
transfer. One may infer that the emergence of coherent 
structures in the horizontal plane [e.g. Spedding (2001)] 
would be associated with this inverse transfer.

The energy distribution over different ranges of length 
scales, as identified by DMD, shows a clear Froude num-
ber dependence in the near wake. Not only do the lee 
wave properties rely on Fr, but also the evolution of shear 
modes are affected by Fr. While at Re = 2700, a smaller 
Fr reduces the energy contained in all vortical modes, at 

Re = 11, 000 it mainly constrains the growth of KH bil-
lows and their pairing, and retains more energy in smaller 
scales for longer distance.

In the modal analyses, the wake structures can be 
described differently by temporal versus spatial DMD, 
though the physical interpretations are generally similar. 
One of the key distinctions lies in the KH mode, which 
is temporally neutrally stable, but spatially grows for 
some distance. The temporal and spatial analyses can be 
used to study different types of instabilities, and the cur-
rent work is offered as an example of its application to 
a well-characterized and comparatively simple flow. The 
analysis suggests that DMD is a promising technique for 
studying the complicated modes in the near wake and for 
identifying the mechanisms responsible for the subse-
quent wave radiation and formation of pancake eddies in 
late wakes.
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