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Late wakes ( N t  > 20) of towed spheres in a stably stratified fluid were analysed in a 
plane using a reliable, customized DPIV technique that provides sufficient spatial and 
temporal resolution to cover all important scales of motion in this freely decaying 
geophysical flow. Systematic experiments were conducted with independent variation 
of Re E [lo3, lo4] and F E [l, 101 ( F  = 2U/ND is an internal Froude number based 
on the buoyancy frequency, N ,  and the sphere radius, D/2),  and for selected (Re ,F}  
pairs above this range. 

The normalized wake width grows at approximately the same rate as in a three- 
dimensional unstratified wake, but it becomes narrower, not wider, with decreasing F 
(i.e. as stratification effects become more important). The centreline defect velocity, 
on the other hand, reaches values an order of magnitude above those measured 
for three-dimensional unstratified wakes at equivalent downstream locations. Both 
observations are argued to be consequences of the very high degree of order and 
coherence that emerge in the late-wake vortex structures. 

Streamwise-averaged turbulence quantities, such as the velocity fluctuation mag- 
nitude, and mean-square enstrophy, show similar power law behaviour for all 
Re 3 5 x lo3, with exponents equal to those expected in three-dimensional axisym- 
metric turbulent wakes. There is no obvious physical reason why three-dimensional 
arguments are so successful in such a flow, and at such long evolution times. The 
scaling collapses none of the cases for Re below 4 - 5 x lo3, appearing to establish 
a minimum Re for a class of self-similar stratified wake flows that evolve from fully 
turbulent initial conditions. 

Individual vortex cross-sections appear to be well approximated by Gaussian distri- 
butions at all Re, F and N t  studied here. The scaling behaviour of individual vortices 
mimics that of the statistical, wake-averaged quantities, and differs measurably from 
a simple two-dimensional viscous diffusion model. The importance of formulating a 
realistic three-dimensional model is discussed, and some limited steps in this direction 
point to future useful experiments and modelling efforts. 

1. Introduction 
1.1. General background 

The initial formation and subsequent long-time evolution of bluff-body wakes in 
a stably stratified fluid is of interest both to those concerned with the persistence 
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of identifiable wake signatures from undersea vehicles, and also as a more general 
problem, where a localized turbulent mixing event evolves in the presence of contraints 
due to buoyancy forces. In most cases, the initial Reynolds number can be assumed 
to be large so that a large range of scales is present and fluid motion is fully three- 
dimensional over many of them. Although it is well known that at long times, these 
wakes are characterized by the presence of stable patches of vertical vorticity which 
have large horizontal length scales compared with any vertical structure, it is not 
known how these vortices are generated from the turbulent wake in the first place, 
nor how they evolve at very long times. Neither is the topology of the vortex lines 
comprising these patches known. 

Not only does the stable stratification promote the formation of these high-aspect- 
ratio vortex structures in the far wake, but it also allows for the transport of energy 
and momentum by internal waves that can be generated either directly from the 
body itself (lee waves), or from its wake. At early times, there is the possibility of 
a coupling of these wave fields with the vortical wake, and certain nonlinear wave- 
wave interactions are possible. The problem can thus generate a rich set of interesting 
phenomena, ranging from linear, separable flows composed of regular waves and 
vortices, to more complex nonlinear interacting flows that are not well understood. 

1.2. Dimensionless parameters 
Far from exterior boundaries, the flow past a body of given geometry is determined 
by the values of two dimensionless parameters, the Reynolds number, Re = UD/v ( U  
is the sphere speed, D its diameter, and v is the kinematic viscosity), and the internal 
Froude number, F = 2U/ND. F is based on the sphere radius, D/2, following the 
example of Hopfinger et al. (1991). F is a measure of the ratio of an advective time 
scale, D/2U, to the time scale, N-’, imposed by the stratification, as measured by the 
Brunt-Vaisala frequency, N = {-(g/po)(dp/dz)}l’’. Thus, at F = 1, the lee waves 
reach their maximum amplitude. Within the {Re, F }  domain generally accessible to 
laboratory experiment, F E [0.1, lo], Re E [lo2, lo4], widely differing wake dynamics 
can be observed. 

1.3. Review of recent literature 
Following the early review by Lin & Pao (1979), more recent additions to the literature 
have clarified some, but by no means all, of these issues in the particular case of 
sphere wakes in stable stratification. 

1.3.1. Separation lines and near-wake structure 
Sysoeva & Chashechkin (1991), Chomaz et al. (1992), Lin, Boyer & Fernando 

(1992) and Chomaz, Bonneton & Hopfinger (1993b, referred to herein as CH93b) 
have documented in some detail the near wake and separation lines on the sphere, 
with extensive flow visualization in either vertical or horizontal planes. CH93b 
described the appearance of a spiral instability mode in the unstratified wake case 
for Re > 4 x lo3. The spiral mode was also present, but with low amplitude for 
Re > 800. The near-wake structure was found to change greatly with the addition 
of stratification, with only a weak Re-dependence. Nevertheless, for F > 1.5, the 
weak and strong spiral mode regimes were reported to appear at Re = 4 x 10’ and 
4 x lo3, respectively. It was suggested that the transition might be related to the move 
from convective to absolute instability regimes, as described by Monkewitz (1988). 
Both Lin et al. (1992) and CH93b report the existence of a regime where separation 
is almost completely supressed, with a bow-tie-shaped separation line contracting 
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in both x and y around a critical F = 0.8. With increasing F ,  the separation line 
moves forward in the horizontal plane with respect to the mean flow, and the vertical 
separation line follows at a higher F so that an elliptical shape is recovered around 
F = 1.5, becoming circular with further increase in F .  A somewhat similar description 
was given in Sysoeva & Chashechkin (1991), though R e  < 800 was typically quite 
low. 

1.3.2. Wake spacing 
Both Lin et al. (1992) and CH93b report an approximately constant power-law 

decrease in dimensionless shedding frequency, S t  = D / A  or S t  = D f / U ,  up until 
F e3-4, when S t  reaches a limiting value of 0.175. This was attributed in CH93b to 
the appearance of the three-dimensional spiral instability, which collapses under the 
effect of stratification, but sets the initial spacing. The same spiral, or helical mode was 
observed earlier by Kim & Durbin (1988) in homogenous wakes. The higher Strouhal 
number regime was associated with Kelvin-Helmholtz instability in the homogeneous 
case by Kim & Durbin, but CH93b interpret it instead as a non-axisymmetric vortex 
shedding mode at Re > 800. Further data points and discussion appear in Bonneton 
et al. (1996), for 1760 < R e  < 3890. 

1.3.3. Late wakes and pancake eddies 
The evolution of the vortex wake structure at moderate and late times has received 

most attention in Lin & Pao (1979), and recently also in Chomaz et al. (1993a, 
referred to herein as CH93a). For the moment, late wakes will be defined as those 
evolving beyond dimensionless times of N t  FZ 20. The motion is quasi-two-dimensional 
in that the vertical component of velocity is very small compared to the horizontal 
components. In a horizontal plane, the velocity field in that plane is almost completely 
accounted for by considering the motions induced by vorticity vectors that are aligned 
parallel to, or close to, the gravity vector. The remaining velocity field corresponds to 
the ‘residual’, essentially time-invariant motion described by Lighthill (1996). 

In the particular case of turbulent sphere wakes, it is unclear whether partially 
decorrelated (though not necessarily decoupled), multiple layers form, as occurs 
in grid-generated turbulence in stably stratified fluids (e.g. Browand, Guyomar & 
Yoon 1987; Hopfinger 1987). CH93a investigated the F-dependence of the far-wake 
formation, identifying a transitional value, F = 4.5 where more than one layer forms 
in the far wake. It was also observed that rates of vertical diffusion of vorticity in 
the far wake greatly exceeded a simple viscous diffusion; this could be accounted 
for by an Ekman pumping type of mechanism, where secondary motion at the 
vortex patch boundaries increased the diffusion rates to 10-30 times that of simple 
viscous diffusion. The model would have to be modified somewhat to account for the 
anticipated multilayer wake at F 3 4.5. The decorrelation of vertical vorticity fields 
at a given N t  was shown to increase with F changing from 3 to 5. 

1.4. Objectives 

This paper reports the results of an experimental programme to study the late wake 
of towed spheres at comparatively large { R e , F } ,  in an attempt to study the effects 
of independent variations in these parameters, and to identify regimes where the 
laboratory results can, or cannot, be extrapolated to practical applications, where 
these numbers tend to be high ( R e  e lo6 and F = lo2). The measurement technique 
allows good spatial and temporal resolution of the instantaneous velocity field on 
an isopycnal, and the emphasis will be on making specific quantitative estimates 
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and comparisons of the mean and fluctuating velocity components and their spatial 
gradients. The focus will be almost exclusively on the vertical vorticity field, as 
measured at the centreplane behind the sphere. The late wake motions have previously 
been characterized and described in terms of the patches of vertical vorticity, which 
will be strongest in the centreplane. It will later become clear that the presence of 
significant vertical structure, with regions of strong horizontal vorticity, are implied by 
the centreplane results, but a sufficiently careful investigation of this vertical structure 
must await further developments in experimental methods. Analysis of the internal 
wave motions will also be deferred until later. This paper in some ways complements 
and elaborates upon a previous publication (Spedding, Browand & Fincham 1996) 
that was based on a small subset of data from the same series of experiments. 

2. Quantitative experiments 
Spheres of different diameters were towed horizontally through a linear, stable 

density gradient in a tank with very large horizontal dimensions compared with the 
sphere radius and initial wake width. A careful application of a customized digitized 
particle image velocimetry (DPIV) technique allowed the long time evolution of the 
quasi-two-dimensional flow that results to be measured on an isopycnal. All important 
scales of motion were fully resolved in space and time, for as long as we cared to 
continue the analysis. 

2.1. Apparatus 

The tank (figure 1) is a 2.4 m2 Plexiglas box with a 1.35 m extension to allow for 
transient and startup effects. Sphere diameters of 1.9, 2.54, 3.8, 5 and 7.62 cm were 
used, so a minimum of 17D was traversed before the sphere emerges into the main 
tank where all measurements are taken. Since the water depth, H = 24 cm, is not 
always large compared to D, confinement effects must be considered. This is especially 
important when attempting to isolate Re effects, when the sphere diameter and hence 
D / H  changes. Although boundary effects could be seen in the internal wave field, 
none of the power law exponents reported here, nor any of the measures of vertical 
vorticity distribution were affected by changes in D / H  over the range of U and D. 
An example of qualitatively and quantitatively similar wakes for D / H  = 0.08 and 
D / H  = 0.32 will be shown in $3.3.1, figure 12. 

Following earlier experiments demonstrating the significant influence on the late- 
wake flow of a forward-mounted tow wire arrangement, the sphere (figure 2) was 
mounted with three thin (d = 0.025 cm) wires, under (extreme) tension in an inclined 
plane and suspended between three thicker support cables at the top and bottom of 
the fluid, respectively. The effects of the top and bottom slider assemblies are confined 
mostly to the boundaries. Red ranges from 7.5 to 65, and shedding can be expected 
during the high-speed tows, but the wires do not intersect the measurement plane, 
and no U-dependent perturbation of the measurements at the expected scales was 
ever detected. 

2.2. Procedure 
The tank was filled with the standard two-tank method to create a linear density 
gradient with a continuous vertical variation in disolved salt concentration. Once 
full, the tank was seeded with a high spatial density (in the plane) of neutrally 
buoyant polystyrene beads, about 0.8 mm in diameter. The beads were sorted by 
density in a specially constructed columnar tank so that the bead density variation 
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FIGURE 1. Schematic/plan view of tow tank apparatus. All dimensions are in cm. W and Z are areas 
digitized by CCD cameras with wide-angle and zoom lenses, respectively. The sphere is always 
towed from right to left, and the startup section serves to avoid contamination of areas W and Z 
with transient effects. 

FIGURE 2. Arrangement of tow wires on the sphere. The thick arrows denote tension in main 
tow cables. The dotted horizontal plane marks the bead sheet, which lies in the centreplane at a 
particular density, po f 0.03%, in the linear distribution, p(z). 

was less than 0.03% (po = 1.0470 k 0.00025). The beads thus mark an isopycnal 
located at the midplane of the body, to within one bead diameter. The mean density 
gradient was measured by selective withdrawal from 10 holes in the tank wall, 
and with a profiling conductivity probe. Restratification of initially turbulent wake 
motions effectively maintained a constant and linear density gradient for 2-3 days of 
experiments; i.e. there was very little mixing over the range of {Re,F}.  The relatively 
inefficiency of mixing under these conditions is consistent with the findings of Park, 
Whitehead & Gnanadeskian (1994), although their measurements were restricted to 
F < 4.5, R e  < 1.6 x lo3. The beads thus remain in a narrow band throughout, and 
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N varies less than 5% during a series of experiments. F is recalculated to correct for 
any measurable variations in N .  

In each experiment, the bead distribution in {x, y }  was first homogenized by towing 
with a vertical rake. After 40 minutes, when the residual kinetic energy and enstrophy 
densities are more than 3 orders of magnitude below typical initial values in the 
wake itself, the body was towed the length of the tank, beginning at the far end of 
the extension section. Data were taken from two parallel-mounted CCD cameras 
(Panasonic GP-MF552) that differed only in the focal length of the lens, covering 
areas labelled W and Z in figure 1. For the subsequent DPIV analysis, pairs of 
video-encoded frames separated by some known 6 t, were digitized directly into PC 
RAM. Exposures for both cameras were centred around the same frame time so there 
is no time shift between the two. At the conclusion of each run, the digitized images 
were transferred to a networked, cross-mounted disk on a Sun workstation, where all 
subsequent processing took place. 

The entire sequence of events (rake-induced stirring - body tow - data acquisition 
~ data transfer - body return), including timed delays between steps, was automated 
and could be performed unattended. Consequently experiments could be conducted 
overnight and at weekends when extraneous disturbances are lower in amplitude and 
frequency. 

2.3. Data analysis 

2.3.1. Image pre-processing 

The digitized particle images contain traces from the three large guide cables. The 
cable images run horizontally across the image, and since they are always at the 
same location, they were easily removed by replacing affected line segments with 
uncontaminated neighbours from directly above and below. The line segments were 
at most 3 pixels in cross-section. This replacement strategy introduces a smoothing 
and self-correlation pattern that is not important in the DPIV calculation because 
it is small in size compared with the correlation box size, and it does not introduce 
any correlation between successive images. Tests based on introduction and also 
subsequent replacement of artificial lines confirmed that the removal could be safely 
and routinely accomplished in practice. 

2.3.2. DPIV/CIV 

At each time step, two digitized particle images were interrogated and the mean 
displacement of information in a given subrectangle was computed from the cross 
correlation peak location. A custom DPIV technique (introduced as Correlation 
Image Velocimetry (CIV) in Fincham & Spedding 1996) was used to obtain velocities 
with approximately an order of magnitude improvement in accuracy over standard 
DPIV methods. The four aspects most responsible are: (i) the decoupling of the 
interrogation search radius from the correlation box size; (ii) the use of a variance- 
normalized correlation; (iii) an iterated smoothing-spline interpolation/fitting method 
for accurate fitting of the correlation peak, and (iv) a direct computation of the cross- 
correlation, without the use of FFTs. Arbitrary sizes and shapes of correlation boxes 
can therefore be finely tuned to the properties of the local displacement field. The 
method does not depend on the presence of particles, but is a localized image texture 
correlation; particles are just convenient fluid markers which ensure that the image 
texture motions map closely onto fluid motions. 
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2.3.3. Error estimates 
The uncertainty in estimating the velocity vector of a local, correlation-box-sized 

blob of fluid is not a simple function of velocity magnitude, and so cannot honestly 
be expressed as a fixed percentage. The error in determining a cross-correlation peak 
location is, to a rough approximation, fixed in pixels, at = 0.02 px, regardless of the 
displacement. The true error depends also on the magnitude of the local in- and 
out-of-plane velocity gradients across measurement volume, whose size is determined 
by the correlation box size and the light or bead sheet thickness. Extensive simulations 
and experimental verifications indicate that practical measurement errors of 0.05 px 
are attainable. When mean displacements are of the order of 5 px, the mean expected 
uncertainty in velocity is thus 1%. 

Given that the real error depends on the flow field structure, it is very important to 
optimize the effective exposure time, at, so that the velocity bandwidth is maximized. 
The bandwidth is bounded by the limits in spatial resolution at the lower end, and 
by the largest length scale that must be resolved at the upper limit. In the decaying 
wake flow, 6 t  should increase exponentially with time at a rate that matches the decay 
in energy and enstrophy of the wake flow. The decay rates were estimated in initial 
experiments, and were then used to generate the timing exponents for the experiments 
reported here. The decay rates measured in this paper are being used for the same 
purpose in current experiments. 

2.3.4. Estimation of velocity gradients 
The velocity vectors were reinterpolated onto the regular interrogation grid to 

correct for systematic errors from the finite displacement of the particles during 
the effective exposure time, 6 t. The interpolation was calculated from a least-squares 
estimation of coefficients for a two-dimensional, smoothing spline (Spedding & Rignot 
1993), that also therefore gives analytic formulae for reconstruction of the spatial 
velocity gradients. The usual errors stemming from finite differencing techniques were 
thus avoided, and the error in quantities derived from the spatial gradients is at most 
10% of the local mean value. 

2.3.5. Spectral Jiltering 
Provision must be made for removal of noise. Here the principal sources were 

from instability and uncertainty in the CCD camera synchronization signals, and 
from systematic errors in correlation peak location due to the bias introduced by 
non-uniformity in the information location in the discretized signal. Since we wish 
to retain the fidelity of velocity gradient information, a simple global smoothing 
is not acceptable, and a two-pass filter system was devised. A first pass involves 
the smoothing spline interpolation discussed above, followed by filtering with a 
fourth-order Butterworth low-pass filter with cutoff wavelength set at 1.5 times 
the grid spacing. Selective removal of small-scale noise at scales of the size of 
the grid mesh is justified on the grounds that such fluctuations are just as likely 
to be artifacts as data, and the original 50% overlap on the interrogation boxes 
adds further support. A simple spectral filter will itself contaminate the data, by 
implicitly imposing periodic boundary conditions on data that are not periodic. The 
quasi-periodic error was reduced by performing mirror-image reflections about each 
edge, and at the corners, performing the FFT on the 3m x 3n grid, and retaining 
only the central m x n domain upon inverse. The smoothed, gridded velocity field 
was then used as input to a second pass where spatial gradients were computed 
from patched, local spline functions. The splines have a smoothing parameter, ps,  
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that can be controlled according to local flow properties. Smoothing was applied 
only within an envelope of possible values that caused fluctuations in the mean 
r.m.s. velocity of less than 1%. No smoothing was permitted when changes of 
greater than 5% in peak {u,v}  resulted, or when peak values of w, (of either sign) 
changed by more than 5%. The detailed procedure is one that allows evident noise 
contamination to be trapped, but is conservative so as to maintain confidence in the 
derived quantities of vorticity and divergence (in the plane) that are discussed in the 
next section. 

The sensitivity to velocity gradients is achieved at the expense of tolerating certain 
systematic artifacts, that are most noticeable in low-Re, low-F flows where a strongly 
localized wake flow is surrounded by fluid that is essentially at rest. Where the true 
velocity gradients are very weak (essentially zero across the interrogation box), an 
artificial du/dy  is measured due to the resonance of a peak-locking in the cross- 
correlation peak-fit algorithm with the finite precision of the video digitizer in phase- 
locking onto each successive line of the incoming video signal. The precision is 
limited by the clock period, which is 1/20 MHz = 50 ns. Average uncertainties of 
the order of 25 ns are thus unavoidable. We claim to measure pixel displacements 
of 0.05 px, which, for a 512 x 480 image at 30 Hz framing rate, is equivalent to a 
time resolution of approximately 7 ns. Consequently, in the absence of any other 
correlation information, it is expected that the phase errors in video digitizing will 
be measured. That is exactly what is observed in the outer flow fields of figures 4, 
7 and 8. Excepting one comparison of inner and outer wake energy and enstrophy 
densities (figure 16), the outer part of the flow field (by definition) takes no part 
in the quantitative analysis that follows. In the inner wake region, for which the 
experimental parameters were tuned, the amplitude of this error is lost in the mean 
correlation peak displacements that are (correctly) caused by motion of the tracer 
particles in the fluid. 

2.3.6. Efective resolution / discretization errors 

Although some care has been taken to avoid excessive smoothing of the velocity 
field, the CIV method, like all discrete imaging methods, will always smooth out and 
underestimate scales that are below, or close to the grid scale. The smallest scale at 
which undersampling becomes unavoidable is determined by the interrogation box size 
(in pixels), which in turn depends on the particle seeding density. Further smoothing 
occurs due to 50% overlap of interrogation boxes, and from the explicit procedures 
described above. The physical scale to which the true sampling corresponds depends 
partly on the geometry of the optics. By using two cameras simultaneously, with 
different focal length lenses, two independent measurements can be cross-checked, 
and the fine-scale grid can be used to check the possible undersampling effects on 
the coarse grid. For convenience, the grid size in both cases was 70 x 56, giving 
average grid spacings of 2.54 cm and 1.24 cm, respectively. For R e  > lo3, and sphere 
diameters between 1.9 and 7.62 cm, one can expect scales smaller than the Nyquist 
criterion to be present at initial times, and at some later time, the fine mesh will 
correctly resolve scales that are still below the resolution of the coarse mesh. The 
effect can be observed in departures from power law behaviour of certain of the 
wake-averaged quantities described below. When it occurs only in the coarse mesh, 
those data can be discarded. When and if a similar roll-off (at small Nt ,  or x / D )  
appears in the fine mesh data, it is reasonable to assume a similar cause, and these 
data can also be omitted. 
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FIGURE 3. Example velocity field for F = 1.2, Re = 4877, N t  = 44. shown as velocitj vectors, {u,v},  
and contours of constant q2, LL and v. In the 11 and u contour plots, the zero line is thickened. 
There are 13 equally spaced contours in q2, u and v, with intervals of Aq2 = 0.142. Au = 0.142 and 
At1 = 0.074. rcspcctivcly. 

2.3.7. Sepurution of internal wuiics and certical uorticitj 

Let { u , r , ~ s }  be the components of velocity in {x,y,z), where g acts in the -z 
direction. [ L L U }  are the horizontal components of velocity that can be estimated. In 
all experiments described here, u and c are measured at z = 0, on the centreplane 
behind the sphere. Figure 3 shows an example of a measured velocity field, at a 
comparatively early time, N t  = 44. The vectors give an idea of thc spatial resolution. 
A strong internal wave field can be seen together with recirculating motions in both 
the {u ,u}  and their separate component fields. The velocity vectors are actually 
projections onto the {x, y]-plane of {u, z'. \v) at discrete points on an isopycnal. This 
is a reasonable approximation of {u ,L . )  in a plane of constant z ,  when vertical 
displacements arc small. Let q be this estimate of { U , P ) .  At any z, one can separate 
q into 

wz = v x q,  

and 

A, = v . ~  
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Equations (2.1) and (2.2) represent an experimental analogue (specific to the single, 
horizontal plane of measurement) of the decomposition of Riley, Metcalfe & Weiss- 
man (1981) and Lilly (1983), who showed that in the low-F limit, one can separate 
wave motions with time scales O(N-’ )  and amplitudes in z of O(1), from turbulent 
motions with time scales O ( N - ‘ / F )  and O(F2) vertical motion. Here, F cannot always 
be regarded as small (at least at early times), and dz = -dw/dz  (from continuity) will 
contain contributions from both waves and turbulence. The ‘waves and turbulence’ 
description of equations (2.1) and (2.2) is thus a convenient approximation, and 
not a strict separation. As the measurement occurs on a constant-density surface, 
the vortex- and wave-dominated parts might be more properly associated with the 
wave/potential vortex decomposition introduced by Staquet & Riley (1989). A gen- 
eral discussion of the comparative merits of alternative velocity field decompositions 
in Fourier space with application to DNS in stably stratified turbulence can be found 
in Lesieur (1993). 

Figure 4 shows the representation of the experimental q ( x )  field of figure 3 as a, 
and A , .  The figure also shows the colour coding for all subsequent flow field images, 
where the colour bar is always rescaled at each local timestep, and balanced about 
the zero level at mid-point along the colour bar. 

Given A , ,  the amplitude of the internal waves can be calculated, based on relations 
given by linear wave theory (e.g. Lighthill 1978, 1995). A separate paper will 
focus on the internal wave structure, comparing experimentally derived d, estimates 
with theoretical predictions. Remarks here will be restricted mostly to qualitative 
statements, but it should be noted that the assumption of two orthogonal, and 
separable vorticity components is an approximation only, justifiable mostly at late 
times when the local Froude number is low. At early times, both the sphere and 
its initially turbulent wake can generate and organize structures where the vorticity 
vector can have any intermediate direction. 

2.3.8. Wake energy, enstrophy and dissipation 

Since both the velocity field and its spatial derivatives are known with good 
accuracy, it is possible to remark on the vortex dynamics of the flow and also to 
measure certain spatially averaged quantities. In particular, X-averaged measurements 
can be made to generate mean flow profiles. Taking X-averaged statistics at fixed 
times is equivalent to averaging over a certain downstream portion of the wake in 
body coordinates. Ideally, the averaging domain, AX, should be a small fraction of 
the total wake length, X. At long times, and for large F, this is so. The general 
expression for AX/X is 

AX - AXID 
X N t  F/2’  

A wake width, Lw, can be defined by computing a AX-averaged velocity profile, 
U x ( y ) ,  where AX = 1.8 m, or 0.88 m, is the streamwise length of the measuring 
area (figure 5) ,  and Lw can be taken as the distance in y where Ux(y )  > 0.2U0, and 
Uo is the mean centreline velocity. Alternatively, twice the standard deviation of the 
AX-averaged w,(y) profile can be used, although this was found to be a little less 
smoothly varying in time. At each timestep, Lw was used to define inner wake and 
outer ambient flow domains. Spatially averaged quantities within the wake region 
will be denoted by ()-brackets, so, defining q = (u2 + v * ) ~ ’ ~  the local (inner wake) 
energy density is 

~~ - 

E = i ( q 2 ) .  (2.3) 
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FIGURE 4. Separation of q in figure 3 into its vortical- and internal-wave-dominated components, 
w, and A,. 
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FIGURE 5. Wake geometry definitions. Streamwise-averaged velocity profiles taken over the length 
AX are used to define the wake width, Lw. The data domain, [AX,AY], is 180 x 140 cm, or 88 x 68 
cm for areas W and Z of figure 1. 

Similarly, given the vertical vorticity 

a v  au 

ax a y 3  

w = ;(oz’). 

a,=--- 

then the local mean enstrophy is 

The measurable components of the rate of strain tensor are 

and, denoting eZ as the kinetic energy dissipation rate due to velocity gradients in the 
plane normal to z ,  then the mean value, S, in the inner wake region is 

s = (EL) = 2V(SijSij). (2.7) 

3. Results 
3.1. {Re, F }  domain, naming conventions 

The experimental conditions were chosen such that independent variations of both 
F and Re can be followed as shown by the rectangular grid in figure 6. Each data 
point represents at least one fully resolved, logarithmically spaced time sequence of 64 
steps, for each camera. Together with 6 further outlying points with larger F and/or 
Re, figure 6 represents a database of 29 x 128 N 3700 instantaneous velocity fields. 

We shall adopt a naming convention where each horizontal track at constant 
Froude number, F ,  will be called Fn, where n is the nearest integer of the mean F ,  
and each vertical track will similarly be named Rn, where n = Re x lo3. R10 thus 
denotes the series of increasing F ,  for Re N lo4. Each series is fixed in one parameter, 
and is always in increasing order with respect to the other. When individual points 
in a series are referred to, they are named with an extension of this same integer 
representation of the second, varying parameter. So, for example, the point F4.5 is 
for F = 4, Re = 5 x lo3, and it is the same as R5.4. 
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iomain for stratified wake experiments. Solid lines mark tracks of approximately 
constant Re or F .  Figures 7(a,b) and 8(a,b) are taken from tracks R5 and FIO, respectively. 

Although the following discussion will be informed by the analysis of all points on 
figure 6, it is impracticable to attempt to show all the supporting CI), and A ,  fields. 
Most of the remainder can be viewed online over the internet using a point-and-click 
forms table that roughly corresponds to figure 6 in layout. Instructions as to how to 
use the World Wide Web protocol to do this are in the Appendix. 

3.2. Qualitative remarks on the variation of CI),(X, y ,  N t )  with {Re,  F }  
In this section, certain general trends with Re and F can be noted with particular 
reference to two tracks, R5 and F10, in the {Re,  F }  domain of figure 6. The parameters 
describing the experimental conditions are in table 1. We note that figures 3 and 
4 indicate that the internal wave motions are closely associated with the initial 
undulation of the mean wake profile, and the initial formation of coherent patches of 
0,. This interesting interaction is most noticeable at low { N t ,  F }  and will be discussed 
in a future publication, and ignored here. Quantitative wake spacing measurements 
in 93.4 show that the omission is mostly justified, as less exotic mechanisms can be 
invoked to account for most of the data. 

Figure 7(a) shows u , ( x , y ,N t )  for four different values of F ,  at Re N 5 x lo3. At 
each F ,  the time series from left to right shows a number of vortex merging events up 
to N t  = 245. The wake structure otherwise remains quite regular, and vortices remain 
close to the centreline. At later times still (figure 7b), few neighbour interactions can 
be seen; the column at N t  = 500 is essentially repeated at N t  = 820. The vortices 
grow in size, apparently diffusively ( N t  = 1270), and can be distinguished above the 
background even up to N t  2: 2000 in the far right column. A principal result, that 
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FIGURE 7 (a). For caption see facing page. 

245 

Exp. N (rad spl) D (cm) U (cm spl) Re F 

R5.1 1.4 7.6 6.4 4880 1.2 
R5.2 1.8 5.0 9.1 4550 2.0 
R5.4 1.8 3.8 13.9 5285 4.0 
R5.8 0.9 3.8 13.9 5285 7.9 

F10.2 0.9 1.9 8.9 1685 10.0 
F10.3 1.8 1.9 17.4 3300 10.2 
F10.7 0.9 3.8 17.7 6715 10.0 
F10.10 1.4 3.8 26.0 9880 9.8 

TABLE 1. Experimental details for R5 and F10 series. Values are rounded to one decimal place. Re 
is rounded to the nearest 5. 
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FIGURE 7. w,(F,Nt )  for Re N 5 x lo3. (a)  N t  E [45,245]; ( b )  N t  E [500,1940]. Data from camera W. 

will underpin much of the following discussion, is immediately established : the vortex 
wake exhibits a high degree of order, as quasi-periodic arrays of vortices can be seen 
at all F ,  and for long times. 

The degree of regularity might be expected to depend on Re, and figure 8 shows 
o,(x,y,Nt) for four different values of Re, at F = 10. In figure 8(a), one can make 
a qualitative distinction between the two top rows for Re < 5 x lo3, and the lower 
two rows for Re > 5 x lo3. It is at the higher Re that the more regular-shaped 
patches of vertical vorticity emerge, and the lower Re wakes have a more fragmented, 
non-smooth appearance. Most of this qualitative difference has disappeared at the 
later times in figure 8(b). 

Some caution is required here, as the top and bottom rows correspond to spheres 
of different diameters, and figures 7 and 8 have not been rescaled according to the 
sphere size (we prefer instead to retain the same sampling reso1ution:image size ratio). 
More seriously, one might suspect that confinement effects could be responsible for 
the apparent Re-dependence, since D / H  changes. Yet this is not consistent with the 
noted F-independence of the R10 series in figure 7, where D also varies by a factor 
of two (table 1). 

Instead, the second major qualitative result seems established: there appears to be 
a minimum Re for the generation of coherent and stable vortex patches. The patches 
emerge from initially turbulent conditions, and since this seems to depend on Re, 
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FIGURE 8 (u). For caption see facing page. 

independent of F at sufficiently high Re, a requirement for a minimum range of scales 
in the initial turbulent wake is implicated. If these conditions are met, then the wake 
structure seems rather stable and long lived, spreading laterally quite slowly. Although 
one can interpret certain of the vortex structures in the wakes at moderate times, 
N t  = O( lo2), as vortex pairs, or couples, they do not appear to separate and propagate 
away from their spatial origin, remaining instead close to the centreline at y = 0. 

The qualitative results on the structure of o,(x ,y)  can be placed on a firmer, 
quantitative footing, where mean profile and turbulence quantities can be measured 
and compared with turbulent wakes in homogeneous fluids. 

3.3. Selfsimilarity in stratfied wakes 

3.3.1. Meun profiles and comparison with unstratfied wakes 
Spedding et al. (1996) gave some simple scaling arguments that, when combined 

with empirical coefficients from three-dimensional turbulent wake studies, showed 
that values of F 3 3 are required for turbulence to be active on all scales in a 
stratified wake, noting that this result was also consistent with results in CH93a,b. 
It is interesting to note, however, that qualitatively-speaking there is no apparent 
F-dependence in figure 7. 

In any event, given sufficiently high initial values of Re and F (determined by the 
velocity and length scales of the moving body), it would be reasonable to predict that 
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FIGURE 8. coz(Re, N t )  for F = 10. ( a )  N t  E [45,245]; ( h )  N t  E [500,1940]. Data from camera W. 

a stratified wake would evolve as a three-dimensional wake in a homogeneous fluid, 
departing from this behaviour at some point, when local Re and F values drop below 
a critical value. There are three notable experimental studies of turbulent sphere 
wakes in homgeneous fluids, by Gibson, Chen & Lin (1968), Uberoi & Freymuth 
(1970) and Bevilaqua & Lykoudis (1978), and quantitative comparisons can be made 
with their measurements. 

Indeed, figure 9 shows that profiles of AX-averaged streamwise velocities, Ux(y), 
collapse quite well when rescaled by the local mean wake width, Lw, and the X -  
averaged peak value, Uo. The particular example is for Re 2: lo4, F = 7.6, and 
self-similar forms can be found up until Nt = 633 (x/D = 2408), which is the last 
one included. Later, the shape begins to differ substantially, and there are difficulties 
associated with making a statistical measurement in a domain that contains fewer 
vortices, located further from the centreline. 

The profiles have a Gaussian shape, except for the tails of the distribution, which 
are usually negative. This is due to the comparatively unvarying y-location of the 
wake vortices; since they are quite closely aligned at some average y-location, the 
mean induced velocity does not average to zero, but to a non-zero mean, opposite 
in sign to the wake defect velocity. Such negative tails can also be observed in the 
three-dimensional sphere wakes for x/D < 1.4 (Bevilaqua & Lykoudis 1978), but in 
the stratified case, they remain for much larger equivalent x/D. 
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FIGURE 9. Self-similar scaling of U x ( y )  for 9 values of N t  from 33 to 633 for Re 'v lo4, F = 7.6. 
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Fitting profiles such as figure 9 with Gaussians of the form, 

-( Y l 2 G )  U A Y )  = Uoe 

allows local length and velocity scales, L, and Uo, to be defined. L, serves a similar 
function to Lw, but is contingent on the shape of U x ( y ) .  Self-similarity implies power 
law behaviour of these scales as 

and 

For three-dimensional wakes in a homogeneous fluid, with Re E [8.6 x 103,8 x lo4], 
Gibson et al. (1968), Uberoik & Freymuth (1970) and Bevilaqua & Lykoudis 
(1978) found that the exponents B1 and C1 for L I D  and Uo/U,  respectively were 
approximately 1/3 and -2/3 (Gibson et al. actually found C1 N -0.85). 

Figure 10(a,b) shows the evolution of L, and Uo with x/D, for a collection of data 
at Re E [5 x lo3, 1 x lo4] and F E [l, 151 (the R5 and R10 series), where the elapsed 
time, t, is converted to an equivalent downstream distance, x / D  = U t / D .  In figure 
10(a), the wake width follows a 1/3 power law quite closely, although some variation 
in offset with F can be noted, where the lower-F curves lie further beneath the three- 
dimensional result. This is unexpected, as the usual notion is that growth in turbulent 
patches in a stable stratification is inhibited in the vertical, and correspondingly 
increased in the horizontal (cf. Flor, Fernando & van Heijst (1994), Fernando, van 
Heijst & Fonseka (1994) for two-layer and linear stratifications, Lin & Pa0 (1979) 
for self-propelled, slender body wakes). According to figure 10(a), the stronger the 
stratification, the narrower the wake. Any attempted extrapolation (in t or F ) ,  or 
generalization (to other geometries, momentumless wakes) of this result would best 
be made with extreme caution, first because horizontal spreading rates depend on the 
degree of mixing in the near wake (which is low here), and second, because a simple 
power law behaviour observed in the late-wake centreplane does not imply that the 



Late wakes in stably stratlfied fluids 71 

t 
0.1 1 

I 
10 100 1000 

xlD 
FIGURE 10. (a )  Normalized wake width, L,/D, as a function of downstream distance, x / D  for 
R5 (figure 7), where Re = 5 x lo3, and F = {1.2,2.0,4.0,7.9} for symbols {+, 0, A, O } ,  and for 
R10, where Re = lo4, and F = {7.6,9.8,14.7} for the filled symbols {+,A,D}. The solid line is 
from Bevilaqua & Lykoudis (1978). The dotted line is a least-squares fit to the R5 and R10 data, 
calculated over x / D  = [loo, 10001. ( b )  U o / U  zis. x /D .  Symbols as in (a). The thick lines are from 
Bevilaqua & Lykoudis (1978) (solid line), Gibson et al. (1968) (dashed) and Uberoi & Freymuth 
(1970) (dotted). The thin dotted line is a least-squares fit, as above, and the large square is an 
estimate from CH93a. 

dynamics are always describable this way, or that the dynamics truly resemble a three- 
dimensional homogeneous wake. The measured power laws are certainly the result 
of quite complex and differing dynamics in the horizontal and vertical directions. 
Further remarks are postponed until the discussion section (esp. 444.1,4.2). 

Further notable similarities and differences with three-dimensional turbulent wakes 
can be seen in figure 10(b), which shows that while the mean decay rate in Uo/U is 
well predicted by a -2/3 (or -0.85, Gibson et al. 1968) power law, at any given x / D  
the peak defect velocity is about eight times the value expected in an unstratified 
wake. The large square at x / D  m 1000 shows the only other data that can be extracted 
from the literature, estimated from a figure in CH93a, and it falls close to the fitted 
line. CH93a also reported two values for the maximum turbulent velocity at z / R  = 0, 
N t  = 750, of u,,, E 0.1 cm s-' at F = 3, and u,,, 2: 0.15 cm s-l at F = 5. This 
corresponds to ratios of u,,,/U = 0.013 and 0.012 for F = 3 and 5, respectively, and 
so the points would lie towards the top of the range of values of Uo/U in figure 10(b) 
for the appropriate x / D ,  just as one might expect, as u,,, 3 Uo. 

In both cases, the dotted line is the mean least-squares fit through the data 
calculated for the range x / D  E [100,1000]. The mean slopes of 0.35 and -0.80 do 
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FIGURE 1 1 .  (a) L,/D and (b)  U o / U  us. ( x / D )  for R2 series. Re = 1730 and F = {1.2,1.6,3.9,10} for 
symbols {+, 0, A, 0). Dotted lines are the least-squares estimates from figure 10. Bold lines from 
the literature are also as drawn in that figure. 

not differ significantly from the unstratified wake results, shown in thick lines. The 
higher-Re data (R10, filled symbols) do not differ significantly from the lower-Re 
values (R5, open symbols), either in slope or offset. The R10 series, for F E [7.9,14.7], 
agrees well with the higher-F values in R5 for L,/D. 

The data do not collapse at all Re, however, and figure 11 shows an example for 
the R2 series, where Re B 1730, and F varies from 1.2 to 10. The wake width increases 
faster than at higher Re, and the mean slope of 0.51 differs significantly from the 
high-Re (and hence, also, the unstratified literature) results. It is in fact closer to the 
value expected from a two-dimensional plane wake. There are indications that the 
exponent is sensitive to the value of F. The mean defect velocity is consistently lower 
in magnitude, independent of F. It is much harder to claim either self-similarity, or 
simple power law behaviour in the low-Re data, as the Gaussian fit to the mean U x ( y )  
profiles is considerably less convincing. This, together with the slightly higher L,/D 
values and the reduced U o / U ,  are symptoms of the less regular, more fragmentary 
wake geometry previously noted in figure 8. 

The constants in equations (3.1) and (3.2) can be estimated from least-squares fits 
to the data in figures 10 and 11 and are shown in table 2. It is not a very precise 
measurement, and so exact numerical values should not be inferred. The individual 
values given for the R5 case, for example, differ slightly from those quoted in SBF96 
(because the fit covers a different, more limited range of x /D) ,  but the mean values 
are close. Based on the preceding discussion and observations on figures 10 and 11, 
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L,lD UOIU 
Series Exp. Bo B1 Co CI 

(1/3) (-2/3) 

F10 F10.2 0.19 0.39 1.44 -0.77 
F10.3 0.40 0.25 2.95 -0.80 
F10.6 0.12 0.47 8.14 -0.94 
F10.10 0.22 0.34 1.38 -0.64 

R2 R2.1 0.07 0.52 1.82 -0.78 
R2.2 0.06 0.64 1.46 -0.75 
R2.4 0.12 0.48 2.13 -0.77 
R2.8 0.21 0.38 1.07 -0.71 

R5 R5.1 0.20 0.31 4.89 -0.95 
R5.2 0.23 0.32 3.14 -0.87 
R5.4 0.37 0.25 2.76 -0.75 
R5.8 0.14 0.43 9.11 -0.99 
mean 0.24 0.33 4.98 -0.89 
sd 0.10 0.08 2.91 0.11 

R10 R10.8 0.17 0.40 1.16 -0.63 
R1O.10 0.22 0.34 1.38 -0.64 
R10.15 0.34 0.27 0.85 -0.58 
mean 0.24 0.34 1.13 -0.62 
sd 0.09 0.07 0.27 0.03 

TABLE 2. Constants for scaling of wake width, L,/D, and UO/U with downstream distance, x l D ,  
for tracks of constant F (FlO), and constant Re (R2, R5, R10). The (1/3) and (-2/3) headers are 
predictions from threc-dimensional turbulent wakes. 

mean values are only given for the R5 and R10 series. The overall mean values are 

Bo = 0.2 f 0.1 and B1 = 0.34 f 0.06, 

and 

Co = 2.7 f 1.9 and C1 = -0.75 f 0.15. 

Little significance can be attributed to the rather uncertain estimates of the multiplying 
constants Bo and Co, but it is quite clear that neither of the exponents, B1,CI differ 
significantly from those expected, and measured experimentally in three-dimensional 
unstratified wakes. The accumulated evidence from data in the domain of figure 6 
suggests that these values are Re-independent, and show no consistent variation with 
F for Re 2 4 - 5 x lo3. As a limited test of this idea, three miscellaneous cases in the 
range Re E [5 x 103,2 x lo4] and F E [5,30] arc shown in figure 12. The empirical 
constants given above were those used to generate the thin dotted lines, which predict 
the data well in all cases, regardless of Re or F ,  up to x / D  N 800. It is quite 
notable that the three-dimensional unstratified results should give the correct power 
laws for the evolution of the stratified wakes at such large x / D .  Also, presumably 
at some F > 30, the centreline velocity must decline to eventually match with the 
homogeneous fluid result, but the approximately order of magnitude increase appears 
to occur over quite a substantial range of high {Re,F}. 
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FIGURE 12. (a) L,/D and ( b )  U o / U  us. (x/D) for selected {Re,F} pairs: (5 x 103,30}, (1.3 x 104,5.8} 
and 12.0 x 104,4.9} for symbols {+,o, A}. Straight lines as in figure 10. The {+,A} experiments are 
for spheres with D / H  = {0.08,0.32}, respectively. 

In turbulent free shear flows it is usual to define a virtual origin, xg, by extrapolating 
backwards in the streamwise direction from some trend in characteristic length scale 
with x/D. Here, the origin of time in seconds was defined as the time at which 
the sphere passed through the centre of the measuring area, corrected for U.  The 
chief effect of identifying and reducing data to a virtual origin extrapolated from 
L w / D ( x / D )  was to add scatter around this default point, partly because it was not 
immediately clear how to remove the F-dependence in L w / D ( x / D )  (e.g. figure 10a). 
The mean values did not differ systematically from the original estimate. Assigning 
xo to the effective (time-averaged) centre of the sphere is consistent with the remarks 
and procedure of Bevilaqua & Lykoudis (1978), and references therein. Errors in 
determining the wake origin would lead to departure from a simple power law at 
small x/D, and could add an effective offset to the measurements. However, there is 
no constant offset that could modify the agreement or difference between the stratified 
wake data and the values in the literature in one quantity, such as L,/D,  without 
having the opposite effect on the other (e.g. Uo/U).  The good agreement between 
L , / D ( x / D )  and three-dimensional values when both R e  and F are high lends further 
support to this strategy. 

3.3.2. Turbulence quantities 
Spedding et al. (1996) showed that various turbulence quantities in the late wake 

appeared to follow power laws for evolution with equivalent downstream distance, 
x / D ,  as would be predicted for three-dimensional turbulent wakes in a homogeneous 
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fluid. A dependence on F was noted, but not discussed further. While it is reasonable 
to expect three-dimensional scaling arguments to hold initially, at some time there 
must be a departure, when an N t  time scale is likely to be relevant, as stratification 
effects dominate. It is useful therefore to couch the scaling arguments in stratification 
parameters, and as a first estimate, the relationship x / D  = i F N t  can simply be substi- 
tuted into similarity forms whose physics are derived entirely from three-dimensional 
unstratified arguments. For example, consider the expected decay of the turbulent 
velocity fluctuation, q. In a self-preserving turbulent flow, the velocity fluctuations 
scale as mean flow quantities. Thus q - Uo, and so one expects 

For three-dimensional wakes this was verified by Gibson et al. (1968), Uberoi & 
Freymuth (1970) and Bevilaqua & Lykoudis (1978), and the preceding result for 
C1 gives good reason to expect a similar value in the stratified wakes also, at least 
initially. Substituting FNt  for x / D ,  the scaling in terms of N t  is 

The vorticity depends only on local length and velocity scales, w - u / L ,  and since the 
relationships, L N x /D' i3  and u - x / D P 2 / ) ,  although originally derived and measured 
for three-dimensional turbulent wakes, appear to hold also for unstratified wakes 
(constants B1 and C1 above), we have 

(&) F - (N t ) - ' .  

Similarly, since E - u 3 / ~ ,  

(3.5) 

The scaling relations in (3.4)-(3.6) incorporate the presumed dependence on F, and 
are independent of Re, for sufficiently large Re. The quantities W1/2 and S 
defined in $2.3.8 can be used as measures of wake-averaged q,  a, and E, to test these 
predictions. 

Figure 13 shows the remarkable collapse of the data onto lines of constant slope, 
over a reasonable range of N t ,  for the rescaled q,  w, and E , .  The experimen- 
tally derived slopes of the 4 and w, decay are not significantly different from the 
predicted slope. It is rather extraordinary that an essentially (slightly) modified three- 
dimensional argument nevertheless predicts the data quite well, even at very late 
times ( N t  = 500) in terms of the known anisotropy of the velocity field. Vertical 
velocities are extremely small, and almost all the energy is contained in the quasi- 
two-dimensional vortex motions. The exception here appears to be in the dissipation 
rates, which collapse onto a line that has significantly different slope than the -7/3 
prediction. Since A ,  = -dw/dz,  then the contribution of ( d ~ / a z ) ~  to the total dis- 
sipation can also be estimated. Although at intermediate times the measured A ,  is 
contaminated by reflected internal waves, order of magnitude estimates for E ~ / V ( A ~ ) ~  
are 2 10 for N t  < 200, and 2 100 for N t  > 1000, and so this term is not responsible 
for significant fractions of the total kinetic energy dissipation, nor for its overall decay 
rate. 

The behaviour out beyond N t  = 1000 up until N t  = 3000 can be seen in figure 14, 
which is from the same series of experiments, but from the wide-angle-lens camera. 
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Where the range of N t  overlaps with figure 14, the agreement between the two 
can be verified, and slopes measured over similar ranges of N t  are identical, within 
experimental uncertainty. The departure from the power law decay, just becoming 
noticeable in figure 13, is more evident, and continues consistently at later times. The 
point at which this happens is around N t  = 600-800, and does not seem to vary 
with F .  The roll-off at high N t  is more noticeable in the quantities involving spatial 
derivatives, cc), and E ,  (figure 14b,c). 

Based on results from mean profiles, one might expect the similarity of the turbu- 
lence measures to hold only for sufficiently high Re, and this is so. Figure 15 shows 
the same measurement for the F10 series. The collapse of the data is less successful, 
and the two lowest-Re cases, where Re = 1685 and 3300, differ both from the two 
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higher-Re cases (Re = 6715 and 9880), and from the R5 data whose least-squares fit 
is given by the dotted line. The high-Re curves do not differ significantly from this 
line. The dissipation curves do not appear to vary in a simple way with Re. Overall, 
however, it appears that the sphere wake measurements do not collapse in all the 
quantities measured here unless Re 3 445 x lo3. 

There is potential for misinterpretation of variations in Re because the low-Re 
runs involve spheres with half the diameter of the higher-Re cases. Consequently 
errors due to limited spatial resolution that will be most prominent at early Nt might 
be expected to vary in severity consistently with Re, particularly since figure 15 is 
derived from the wide-angle camera, and so has the coarsest resolution. However, the 
fine-scale data reproduce all these trends very closely, and all data that overlap in N t  
are thus confirmed. Furthermore, no such explanations can apply to the measurable 
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FIGURE 15. Normalized fluctuation velocity (a ) ,  vorticity magnitude (b ) ,  and energy dissipation rate 
(c) us. N t  for F10, where Re = (1685,3300,6715,9880) for symbols {+,o,A,O}. The thin dotted 
line is the mean of the R5 and R10 series. 

differences at much later times ( N t  > 100) when the dominant scales of motion are 
very large compared with either mesh. 

There are eleven experiments in which Re is high enough that the empirical 
constants determining the decay rates of the turbulence quantities may be averaged 
together, and the overall result is given in table 3. Mirabile dictu, the decay rates of the 
velocity fluctuations and of the vorticity magnitude do not differ significantly from 
the original predictions based on an extrapolation of three-dimensional turbulence 
scaling out into stratified data. It is far from clear why this is so, and even less 
clear why it holds for such late times. The rescaled dissipation rate decays at a 
significantly lower rate than the three-dimensional arguments would indicate. Further 
interpretation of these points will be postponed to the discussion section. 
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LHS C CI 

mean sd mean sd (q) F2I3 2.3 0.4 -0.71 0.05 

($) F 8.6 2.4 -0.91 0.07 

(&) F7I3 0.023 0.014 -1.83 0.14 

TABLE 3. Scaling in equations (3.4)-(3.6), represented in general form, LHS N C(Nt)" .  C and CI are 
mean values from 1 1  different {Re,F} pairs for Re 3 5 x lo3. 

3.3.3, Practical limits in wake detection 
A cursory inspection of figures 7 and 8 shows that coherent wake structures are 

observable in the the centreplane even at very large N t ,  and it is of some practical 
interest to know for how long these wake signatures remain detectable, above the 
background noise. Figure 16 compares the time evolution of the inner wake and 
outer ambient (as defined in figure 5 )  averaged velocity fluctuations (figure 16a) and 
vorticity fluctuations (figure 16b). In both cases, a substantial contribution to the 
ambient component actually comes from the edges of the wake region, outside the 
cutoff point at 0.2U0, reducing the signa1:noise ratio by a factor of ten or more. 
However, the wake is clearly distinguishable by its higher mean values of fluctuating 
velocity and vorticity, up until N t  w 2000. In and around the ocean pycnocline, 
N w 2 x lop3, and so tabs w lo6 s, or around 12 days. Although the result can be 
qualified by reminders that real wakes do not live in quiet ambient oceans, and that 
a surface signature must propagate first through an upper mixed layer, it is also 
true that t& was given above for averaged quantities, whose spatial distribution, or 
pattern, may be yet easier to extract. 

The following sections examine the wake geometry in more detail. 

3.4. Vortex patch spacing, Strouhal number 
The streamwise separation distance, A,., between neighbouring vortices of the same 
sign was measured for as many time steps as there were judged to be a sufficient 
number of vortices for statistical validity, and figure 17 shows the effect of variations 
in F and Re on this measure, expressed as a Strouhal number, S t  = D/&.  

The mean spacing, (Ax), was measured in two ways, both of which are shown 
in figure 17. The simpler method is to manually identify successive vortices in the 
o, (x ,y )  fields at each N t  and to ensemble average the result. The procedure is 
computer-assisted so that the initial peak location, performed by eye, is refined with a 
two-dimensional interpolating fit, and certain other statistical criteria can be checked 
on the structure before computing a streamwise separation. The symbols mark the 
mean S t  value at each N t ,  computed from these (Ay). Alternatively, a localized 
and directional-specific spectral measurement on the same data should give the same 
result. A two-dimensional wavelet transform using the wavelet function Morlet2D 
(the properties of this, and other two-dimensional wavelet functions for data analysis 
are described in detail in Dallard & Spedding 1993) was performed. The wavelet 
function is direction-specific and is oriented at 0" so that resonance occurs only with 
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FIGURE 16. Normalized velocity (a )  and vorticity ( b )  fluctuations for the wake region (+) and the 
outer ambient fluid (0). The separation of outer from inner regions becomes increasingly difficult at 
N t  > 2000. The amplitude of the fluctuations in the outer region is artificially elevated by leakage 
from the finite energy wake cutoff criterion. 

wavevectors aligned close to the x-direction ( k y  = 0). The local wake width, Lw,  
defined previously, is used to define the spatial extent of a region in which the most 
dominant length scale is found by locating the centroid (in wavelet scale, a) of the 
modulus of the wavelet transform in this domain. Least-squares power law fits to the 
wavelet-derived measure of &) are shown with continuous lines in figure 17. The 
agreement with the manual method is excellent. 

S t  steadily decreases with time, mainly through pairing of like-signed vortices, as 
can readily be observed in figures 7 and 8. The change in S t  is thus a measure of 
the rate at which pairing occurs. It also gives rise to the slightly stepwise changes 
in S t ( N t )  in the hand-counted data of figure 17(a), as pairings occur at similar time 
steps across the whole field. The wavelet result tends to average out this effect. 

The decay of S t  with N t  appears to be independent of F ,  although the absolute 
value of S t  depends on F over the whole range of F E [1.2,8]. CH93b and Bonneton 
et al. (1995) described the emergence of the collapsed spiral mode in the near wake at 
F = 3, where S t  = 0.175, and no variation with further increase in F. The horizontal 
lines in figure 17(a-c) are drawn at this value of S t .  Note that there is a clear 
F-dependence up until F = 8, and that while the spiral mode may dominate near- 
wake velocity fluctuations, there is no evidence that it has any special significance in 
determining the far-wake spacing. For F > 2, initial wake spacings are quite close to 
S t  = 0.175, as previously noted for F = 4 in Spedding et al. (1996). 

Figure 17(b,c) shows that S t ( N t )  is not particularly sensitive to changes in Re, 
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FIGURE 17. Wake Strouhal number, S t ,  us. N t  for R5 (a), F1 (b), and F10 (c). The symbols {+, 0, A, 0) 
denote F = {1.2,2.0,4.0,7.9), Re = {1216,1558,2700,4877} and Re = { 1685,3300,6715,9880) for 
(a), (b )  and (c) respectively. The straight lines are power law fits to independent measurements 
of St from wavelet transforms, as explained in the text. The long-dashed lines in (b )  and (c) are 
averages over all Re in that series. The continuous, horizontal lines for S t  = 0.175 correspond to 
the expected value for the spiral instability mode. 

for F = 1.2 and F = 10, although there is some scatter in the symbols, mostly at 
lower Re. The wavelet curve and the symbols do not agree so well for the F1 series 
(figure 17b). This is likely to be because when both R e  and F are low, it is difficult 
to discern small-amplitude fluctuations in the mean vorticity profile, and the manual 
count probably overestimates the true wake spacing. When either F or R e  is increased, 
the problem disappears, and agreement is once again good (the squares are the same 
data as the crosses in figure 17a). The absolute value of S t  varies with the different 
values of F in figure 17(b,c) as one would expect from the trend in figure 17(a). The 
decay rates do not vary measurably with either R e  or F .  
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FIGURE 18. Rescaled Strouhal number, StF113 us. Nt .  (a) Manually estimated wake spacing, where 
Re 3 5 x lo3 and F = {1.2,2.0,4.0,7.9,10.0} for symbols {+,o, A, 0, x}. The dotted line is the mean 
value of separate least-squares fits through all the data but for the lowest F = 1.2, which does not 
collapse. ( b )  Wavelet transform-derived results from figure 17(a-c), retaining the same line types; 
of the two long-dashed lines, the F1 series is the uppermost. The solid line is a mean of all the 
individual fits for F 3 2. 

Suppose 2, - Lw, then substituting the relation x / D  N F N t  into equation (3.1) 
and retaining the 1/3 exponent as suggested by the results in 53.3.1, we arrive at an 
equation for A,(Nt) that incorporates a predicted F dependence as 

Hence, S t  - D/A,  should vary as 

St  F-1/3Nt-1/3 (3.8) 

Figure 18 shows that the rescaling is quite successful in collapsing the data for 
2 6 F < 10. The F = 1.2 curve, for both hand-counted (figure 18a) and wavelet- 
based (figure 18b), lies significantly away from the rest of the data. The non-collapse 
is the first sign of the possible existence of a transitional F value in the current data, 
but its implied value lies well below the expected 3-6 range. Least-squares fits to the 
hand-counted and wavelet-based collapsed data (shown as dotted and solid lines in 
figure 18(a,b), respectively), give a multiplying constant, and exponent for equation 
(3.8) that do not differ significantly from 1, and -1/3, respectively. 

CH93b and Bonneton et al. (1995) report St  - FP3/* for F d 3, but no systematic 
dependence of S t  on F at higher F .  The low Froude number behaviour observed 
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here is therefore more consistent with their low-F result, in that the magnitude of 
the exponent would increase in the appropriate direction. The higher-F values still 
show a (predicted) F-dependence, but it is always for a relatively late wake flow, 
not necessarily directly comparable with the near-wake, hot-film results. At high 
enough F ,  the spiral mode may determine the earliest detectable coherent streamwise 
wavenumber. Afterwards, the wake kinetic energy decays, local Froude numbers are 
low, and the spacing is determined by nonlinear vortex pairing mechanisms, and the 
S t ( N t )  decay rate no longer depends on F or Re. Nevertheless, some memory of the 
initial Froude number is retained through the absolute value of St. By contrast, there 
is no remnant of the differing Re over this Re range. 

3.5. Local {Re, F }  in stratijied wakes 
In the previous section, wavelet transforms were used to measure local length scales 
in the wake. Since the fluctuating velocity distribution, q(x,y),  is also known, this 
suggests the use of these scales to define local Re(x,y) (see Farge 1992) and F(x,y) 
fields. Denoting by &(a,b) the wavelet transform at scale, a, and position b, of the 
vertical vorticity field, then at each spatial location, (x ,y)  (= b here), a characteristic 
scale, l X ,  can be defined as the scale at which I&(u,b)I has its maximum value. Now, 
the local Reynolds number can be defined as 

and its spatially averaged value is computed from all locations at which the transform 
modulus exceeds some minimum threshold, T ,  

(Re) = (Rex(x7Y))loi,(a,b)l>T. (3.10) 

Similarly, a local Froude number can be defined as 

and the corresponding average value is 

( F )  = (Fx(x9 Y))l&2(a,6),>r* 

(3.1 1) 

(3.12) 

The X-subscripts (omitted for convenience in the wake-averaged values) refer to the 
fact that the length scales are computed from a direction-specific wavelet that selects 
wavevectors aligned in x. This is to avoid introducing the wake width itself as a 
non-independent length scale. 

Figure 19 shows that at all times the spatial distributions of Rex(x,y) and Fx(x,y) 
are roughly similar. This is because the dominant length scale, I x ,  does not vary 
greatly across the wake, so the major fluctuating term in both quantities is just the 
velocity magnitude, q. Consequently, at later times, vortex core centres are marked by 
regions of very low Re and F .  Otherwise, regions of higher Re and F where nonlinear 
inertial forces may be significant occur predominantly in the wake centre early on, 
and at the vortex peripheries at later times. There is no apparent accumulation of 
enstrophy in small scales at the vortex core centres. 

The mean and maximum (Re) and ( F )  values are plotted vs. Nt in figure 20 for 
the R5 series. As one might expect, the local (Re) values are initially approximately 
equal (the initial Re is constant), and their decay rate also appears to be independent 
of F.  The mean, and maximum values behave in the same way. Since the wake width, 
Lw,  grows as ( x / D ) ' / ~  - Nt1I3, while q - Nt-2/3, then (Re) - lxq might be expected 
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FIGURE 19. Local Reynolds number, Rex(x ,y )  (a ) ,  and local Froude number F x ( x , y )  (b) ,  us. N t  for 
initial values determined by the sphere geometry and velocity, Re = 5286, F = 7.9. N t  is in the range 
[21, 3321, equivalent to x / D  = [82,1305]. At each ( x , y )  location, values are thresholded at 40% 
of the maximum value of the wavelet transform modulus at that N t .  At later times, characteristic 
length scales are larger, and the Rex and Fx fields are truncated close to the edges of the data 
domain to remove artifacts due to the non-compact support of the wavelet function. The colour 
bar is rescaled to span the local range of Rex and Fx at each Nt.  
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FIGURE 20. Average and maximum Reynolds number (a)  and Froude number (h)  from local wake 
length and velocity scales. Upper curves are the maximum value. The data are from R5 with ... 5 . lo3 and . varying .. {1.2,2.0,4.0,7.9} for lines { ..... - - -, - . - . -, ). 

to scale as 
(Re) - ~ t p " ~ ,  

provided lx - Lw. The solid line shows this to be a reasonable approximation of the 
measured decay rate. In figure 20(b) it is immediately apparent that ( F )  is always 
quite low, regardless of the initial F .  The collapse of the curves provides a physical 
interpretation for the comparative independence of the mean profile and turbulence 
data of the initial value of F ;  since the local Froude number is always low, and 
not very sensitive to its initial value, buoyancy effects are always dominant in the 
evolution of the late wake. Reasoning as above, one may expect, 

( F )  - Nt-', 

which again agrees well with the data. The mean and maximum curves differ by an 
order of magnitude in absolute value, giving an indication of the magnitude of the 
fluctuations about ( F ) ,  but their slopes are identical. 

Figure 21 shows the variation in (Re ) (N t )  and ( F ) ( N t )  with Re, for the F10 series. 
(Re) differs significantly in absolute value depending on its initial value, and this 
difference is measurable for long times. At the higher Re values, the slopes agree 
satisfactorily (insofar as a constant slope of any kind exists) with the previously noted 
-1/3 value. The slope itself varies with Re at lower Re, and in the lowest case (for 
initial Re = 1685) (Re) is approximately constant up to Nt m 1000. The collapse of 
the ( F ) ( N t )  curves is less successful than for the R5 series, but the higher-Re cases 
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Re = { 1685,3300, 

are quite well predicted by the Nt-' relation given by the solid line, and consistent 
with the R5 data in figure 20(b). 

3.6. Vortex geometry and time evolution 
3.6.1. General form of the vorticity distribution 

The time evolution and geometry of individual vortices can be measured once they 
have become separately identifiable coherent features. The time, N t ,  at which that 
happens is not greatly sensitive to F (figure 7), but does vary with Re (figure 8). By 
selecting only those vortices that appear as distinct structures, some of the structural 
difference is lost since the basic shape is pre-selected, but one can still investigate the 
vorticity distribution of the selected structures for different N t ,  F and Re and look 
for remaining similarities and differences. 

At any given timestep, vortices were manually selected and a computer-generated 
bicubic spline was fit about the peak to give an interpolated ( x , y )  location for the 
maximum value, wo (the z subscript will be omitted for clarity in this section). As 
in the wake width measurements, a characteristic length scale, l,, can be defined 
as the radial distance from the centre to where w(r )  falls to some fraction of the 
maximum value, set here to 0 . 2 ~ ~ .  We do not wish to measure deformations of 
the shape due to merging events, and when such occurrences noticeably distort the 
radial symmetry, either they are omitted entirely, or only transects normal to the line 
connecting the pair are taken. Thus we measure an average of only weakly distorted 
core distributions. 

Figure 22 compares the w(r )  profiles for four values of F at Re 2: 5 x lo3, at 
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FIGURE 22. Radial distribution of the vertical vorticity (omitting subscript z )  for R5: (a)  R5.1, (h)  
R5.2, ( c )  R5.4, ( d )  R5.8, with F increasing from 1.2 to 7.9 from ( a )  to ( d ) ,  all at time N t  = 140. 
14, 12, 12 and 20 individual profiles are superimposed on each plot, but the symbols are not unique. 
The spacing of the square symbols in (b )  indicates a typical spatial resolution. The solid curves are 
least-squares Gaussian fits to the ensemble-averaged profiles. 

N t  N 140. The residuals in the Gaussian fits do not vary systematically with F ,  and 
this functional form seems to approximate the data quite well. It is not uncommon 
to see negative tails in the data, that are probably attributable to transects running 
through the edge of an opposite-signed neighbour. 

Somewhat more surprisingly, figure 23 shows that variations in Re do not have a 
measurable effect on the profile shape, which again is usually well approximated by 
a Gaussian. Recall that the lowest-Re cases (F10.1, F10.3, top rows, figure 8) have 
a much more fragmented, less smooth coz(x, y) distribution, which is not reflected in 
the cross-sections of figure 23. 

Several explanations can be advanced: (i) a statistical average of a large number 
of arbitrary-shaped peaks could simply look like a Gaussian. However, there are 
no large deviations in the individual profiles, and the scatter of data around the 
solid line in F10.2, figure 23, is not greater than either the F10.7, F10.10 cases at 
higher Re ,  or the R5 series in figure 22. (ii) It could be a problem associated with 
the lower effective resolution (grid scale compared to body diameter) at lower Re.  
Cumulative smoothing effects could be such that the apparent Gaussian is just the 
average smoothing function convolved with initially non-smooth data. This possibility 
is hard to rule out entirely, despite the precautionary measures discussed in 52.3.6. In 
the worst case, there are only seven points across an entire individual profile, and 
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FIGURE 23. w/wo us. r / l ,  for Re = {1685,3300,6715,9880} and F = 10 and N t  = 140 (from series 
F10: (a)  F10.2, ( b )  F10.3, (c) F10.7, ( d )  F10.10). Further details as in figure 22. 

sharp, subgrid-scale vorticity gradients might have been artificially smoothed out. On 
the other hand, data points do exist in the individual profiles in figure 23(a,b) that 
deviate from the mean, and from a perfectly smooth curve. It is also perfectly possible 
to measure w(r)  profiles over selected structures at the same scale that have much 
less regular shapes, and that have steeper gradients of d o l d r .  Because the shapes of 
these strained vortices were clearly affected by interactions with other vortices, they 
were not included in figure 23. It is therefore demonstrably not the case that steeper, 
or less regular distributions of a similar scale cannot be measured. It is the case that 
those that have been selected are those that are apparently undistorted structures 
in the first place. Thus a reflection of the irregular w z ( x , y )  fields at low Re lies in 
the smaller number of profiles (compare F10.2, F10.3 in figure 23, with the others 
in that figure, and also with any of figure 22) that were subjectively judged to have 
met this criterion. Nevertheless, when one of these structures can be isolated, the 
vorticity distribution is not unlike that of higher-Re cases. Finally, therefore, we are 
left with the more prosaic explanation, (iii), that the w(r)  profiles really do look like 
this, perhaps due to similar fluid mechanics. In considering viscous vortices at these 
time scales, diffusion of vorticity could account for such similarity. When the vortex 
core structure differs substantially, as it does more frequently at low Re, then it does 
so because of increased frequency of vortex-vortex interactions. 

Before further pursuing this point, we note without further graphical demonstration 
that the Gaussian form also fits the data well at all Nt, once the identifiable structure 
has formed, and provided it is not being stretched by strong neighbour interactions. 
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Since o ( r )  can in general be written as 

the time evolution of o0 and 1, of individual wake vortices can be investigated, as 
can the circulation, r,, which can be integrated out to the radial distance, r,, where 
r = 1,: 

I-, = 2 x 1  o(r)dr. 
r ,  

3.6.2. The life history of a vortex 
An automated tracking algorithm was devised so that selected single vortices were 

tracked in reverse time, beginning at a frame of data with a small number of readily 
identifiable structures. An initial vortex, once labelled, can very easily be tracked 
automatically owing to the closely spaced timesteps (only every other timestep was 
ultimately used), and the well-organized nature of the flow field. At each timestep, an 
elliptical Gaussian fit was made to the vortex, where the location, amplitude, major 
and minor axes, and orientation are solved for in a six-parameter least-squares fit. T ,  
is computed within this ellipse, but for simplicity 1, is taken as the mean of the two 
length scales. When (in reverse time) a merger is observed, the partner is also picked 
up, labelled and tracked in the same fashion. Not many vortices can be followed for 
long times in this way (after all, few remain in the final frames), and so the following 
descriptions and observations necesarily lack statistical weight; nevertheless certain 
points can be made. 

The time evolution of two vortices, one positive (+) and one negative (o), from 
the same experiment (R5.8), can be seen in figure 24: l,, /o01 and Ir,, are plotted in 
dimensional units us. time in buoyancy periods, N t .  The cc)Jx,y,Nt) fields for each 
data point are shown in figure 25, where the individual vortices are labelled with the 
same symbols as in figure 24. The tracking begins in the bottom right corner and 
proceeds from right to left, bottom to top in figure 25. 

At long times, the increase in l,, and decay of lw0l and Ir,l with N t  are quite 
similar in the two vortices. During this period, which occupies most of the total time, 
the vortices apparently interact only weakly with like-signed neighbours, and process 
slowly, as a couple, in the direction of the mean wake flow, towards the left edge of 
the observation area. Despite the lack of obvious signs of vortex-vortex interactions 
in the plane, it is not necessarily equivalent to their being isolated. As already 
noted, this wake, and others at sufficiently high Re, is remarkable in its high degree 
of organization at long times, and this particular couple (if indeed it should be so 
termed) has not strayed far from the wake centreline, up to N t  N 1000 (x/D N 4000) 
in the final frame. 

Early on, at N t  = 77 (timestep # 5 ) ,  a merger occurs between the positive vortex 
(+), and a neighbour, shown in figures 24 and 25 as a A symbol. At the moment 
of this merger, given by the solid white blobs in figure 25, both 1, and Ir,l rise 
sharply for (+). This is followed by a short plateau in COO for (+), as vorticity 
accumulates into a more compact structure. Consequently, 1, drops quite rapidly. 
About 7 0 N t  (4 timesteps) after the merger event, values of l,, 1~001 and lT,l appear to 
have relaxed back to values that might be extrapolated from pre-merger conditions. 
The rapid relaxation corresponds to momentarily very high decay rates of circulation 
in the plane, and either the merging process is extremely dissipative, or there is 
an out-of-isopycnal flux of circulation. The observed vertical flux could correspond 
to a readjustment in z of the vortex structure(s) with respect to the measurement 
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plane. Alternatively, the merger could be accompanied by vertical thickening of 
the wake, or give rise to a tilting of the vorticity vector into horizontally shearing 
structures. Fifteen merger events have been tracked in this way, and the interactions 
are sometimes conservative, in the sense that initial merged circulations are roughly 
equal to the sum of the component values before the merger, or non-conservative, 
with up to 80% of the circulation in the plane being removed during the merger. 
Statistically, one might expect that any mechanism involving layer thickening would 
depend in a predictable way upon the Froude number, but not enough measurements 
have been made to test this, and in any event, we have already noted how the local 
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FIGURE 25. o,(x, y ,  t )  for the same experiment as figure 24. The equivalent time and downstream 
ranges are: N t  E [21,920], x / D  E [82,3620]. There is a one-to-one correspondence between frames 
and symbols in the two figures, so each fluctuation in the curves of figure 24 can be matched to a 
particular event in a particular vortex here. The merger between (+) and (A) vortices occurs at the 
timesteps marked by the solid white blobs. Symbols are otherwise placed only at the beginning and 
end of each line to assist in visual tracking. The colour bar was designed to identify three primary 
regions: blues for negative vortices, reds for low absolute values, and yellows for positive vortices. 
The colour bar is rescaled at each timestep, and balanced symmetrically about zero, which is shown 
by the middle vertical bar. Tracking begins at bottom right and proceeds from right to left, bottom 
to top. 

Froude number is always small (cf. figure 21). Moreover, there is no reason to suppose 
that either one of these mechanisms occurs to the exclusion of the other. 

In each of the { R e , F }  pairs of figure 6, the time histories of the strongest surviving 
vortices at late times can be compared. The difference between vortices in figure 24 
can be borne in mind as an indication of the likely variance within each { R e , F }  
example. 

3.6.3. Dependence of vortex scaling on (Re, F }  

Zfmotion in the vertical dimension is supressed by stratification, then the flow might 
behave locally as if it were two-dimensonal. Furthermore, one might reasonably ask 
whether the late-wake data collapse because all motion is basically governed by 
viscous diffusion of vorticity. Without going into great detail, a simple viscous 
model flow can be used for a heuristic comparison. The solution for the viscous 
decay of an initially isolated, two-dimensional vortex of strength To was given by 
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for which the circulation at radius r is 

(3.13) 

(3.14) 

The vortex size r - t ' /*, so a non-dimensional scale would grow - t1/2. The vorticity, 
o, decays - t r '  and the circulation, r ,  would remain constant. These scalings 
provide a simple point of comparison for the measured I,, wo and rg. Alternatively, 
one might use the turbulence velocity and length scale arguments that result in 
relations of the type in equations( 3.4)-( 3.6) to generate predictions and scalings that 
include stratification parameters. Thus, if measures of individual vortices behave as 
the flow field does in general, then length, vorticity and circulation should scale as 

and 

(g) F - ( N t ) - ' ,  

(3.15) 

(3.16) 

(3.17) 

Note that the predicted exponents for I ,  and differ from the two-dimensional 
viscous diffusion model, but oo is the same. 

Figure 26 shows first that equations(3.15)-(3.17) are quite successful in collapsing 
the data over a range of F, and second that there are periods at moderate to late 
times where the exponent seems not unreasonable. ( l , /D)(Nt)  (figure 26a) seems to 
contain two different regimes. Up  to N t  NN 300, there is a very gradual growth in & / D ,  
whose absolute values still show some remaining F-dependence that is not accounted 
for by the predicted F- ' f3  law. Interestingly enough, the data collapse quite well for a 
F r ' f 2  scaling that might have been predicted had an Nt ' f2  behaviour been postulated. 
We include the customary caution here about interpretation of peculiar trends at 
early times that may reflect insufficient and unequally distributed effective sampling 
errors, but the result persists to quite late times ( N t  = 300), far beyond the very early 
timesteps when uncompensated resolution errors could be at fault. 

In the second regime, for N t  > 300, growth occurs at rates that are fairly consistent 
with the anticipated 1/3 law. The t ' f2 behaviour for purely two-dimensional viscous 
diffusion appears to significantly overpredict the observed growth rates. Of course, 
diffusion of vorticity occurs also in the vertical, and CH93a showed that the vertical 
diffusion occurs more rapidly than on viscous time scales, possibly due to an Ekman 
pumping type of mechanism. These, and other three-dimensional effects need to be 
accounted for in a suitable three-dimensional model. 

The decay in peak vorticity magnitude (figure 26b) shows a good collapse and 
agreement with a tr' scaling that would be expected both from viscous diffusion 
alone, and also from the foregoing, wake-averaged results. The rg decay rates are 
not so clean, but do not show significant disagreement with a t r ' f3  law. They are not 
zero. 

Generally, the vortex time histories rescale just as the wake-averaged turbulence and 
mean flow quantities do, although the length scales show some persistent differences 
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FIGURE 26. Normalized vortex radius, l ,/D (a), peak vorticity, [wol/( U / D )  (b) ,  and circulation 
magnitude, l r , J / ( U D )  (c), rescaled by F as described in the text, for R5. F = {1.2,2.0,4.0,7.9) for 
symbols {+,o, A, O } .  The solid lines are from equations (3.15)-(3.17) respectively, drawn over the 
range of N t  where they might adequately describe the data. The dotted line in (a) is for an Nt'12 
power law, with arbitrary offset. 

at early times. A number of alternative scalings and normalizations were investigated, 
but all were measurably worse in collapsing the data. Recall that these are still 
basically modified scaling arguments derived for three-dimensional unstratified fluid 
turbulence. They provide no physical explanation as to why such such behaviour 
should be observed here ; apparently, an explanation invoking the omnipresence of 
viscosity is insufficient, as the slopes of figure 26 do not scale this way. 

Following the failure of low-Re data to collapse in the wake-averaged measure- 
ments, one might expect a similar result for individual vortex length scales, unless the 
apparent insensitivity of the shape to R e  in figure 23 foreshadows similar behaviour 
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FIGURE 27. Normalized l,/D (a), l o ~ l / ( U / D )  (b) ,  and Ir , l / (UD) (c )  for F10, where 
Re = { 1685,3300,6715,9880) for symbols {+, 0, A, O } .  Further details as in figure 26. 

in the scaling of the shape with time. Figure 27 is as figure 26, but for the F10 
series. In all three graphs, the lower-Re curves, (+, 0: Re < 4 x lo3) can be separated 
from the higher-Re ones (A, 0: Re > 6 x lo3). The scales on the ordinates are 
the same as figure 26 and the higher-Re curves are consistent with those data at 
Re 2: 5 x lo3. The mean radius shows considerable fluctuations at lower Re, and each 
of these these can be traced back to continuing interactions between wake vortices as 
the less-orderly wake geometry brings them into mutual contact. In the face of such 
variations it is difficult to determine whether or not the low-Re curves indeed show a 
more viscous-type scaling behaviour in 1, (a possible interpretation of figure 26a), but 
their T , ( N t )  curves are almost flat, as would be the case in a purely two-dimensional 
viscous decay. 
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Consistent with previous results in this paper, the low-Re data do not show the 
same scaling behaviour as the higher-Re data. The transition value appears to be 
some where in the range 4-5 x103. 

4. Discussion 
4.1. Scaling of stratijied turbulent wakes 

Existing data on three-dimensional turbulent wakes behind bluff bodies show scaling 
behaviour that one might perhaps expect to be followed at early times in stratified 
wakes, at sufficiently high values of Re and F .  Eventually, however, one might equally 
expect to see significant departures, due to the increasingly effective suppression of 
vertical scales of motion in the decaying wake. The unmodified three-dimensional 
arguments are surprisingly good estimators for the exponents in power law behaviour 
of mean profile velocity and length scales, and a simple recouching of these physical 
assumptions into stratification parameters is successful in collapsing both mean profile 
and wake-averaged turbulence measurements. The initial decay rates appear to hold 
for very long times, up to Nt = 1000 (400 d x / D  d 4000). After this Nt, the decay 
rates of the wake energy and enstrophy increase, but the surprising aspect is that 
the three-dimensional scaling works for so long. In the regime, 100 < Nt < 1000 
the vertical velocity, w, is very much smaller than { u , ~ } ,  and the flow is neither 
three-dimensional, nor turbulent (local mean (Re) d lo3). Of course, a demonstrated 
agreement with some postulated scaling argument does not in itself constitute a 
proof of physical mechanism. In three-dimensional turbulent axisymmetric wakes, 
application of the self-preservation hypothesis to the reduced momentum equations 
(Tennekes & Lumley 1972) leads to 1 - x1/3 and U - x-2/3. For plane wakes the 
relations are 1 - xl/' and U - x-'l2, respectively. In these, and all other measures 
reported here, the stratified wakes are better approximated by three-dimensional 
scaling relations than by two-dimensional or plane wakes. It is possible that some 
structure in the vertical direction allows dynamical interactions that give averaged 
scaling laws that are similar to the three-dimensional results. 

4.2. {Re, F}-dependence 
One common thread linking these arguments is the assumption of a fully developed 
turbulence, where only local scales of length and velocity determine the flow. It is 
unsurprising therefore, to find that there is a certain minimum Re before such scaling 
regimes obtain. Measures proportional to the wake width, kinetic energy, enstrophy, 
vortex size, peak amplitude and circulation all fail to collapse when Re < 5 x lo3. The 
maximum Re for which collapse has been demonstrated (i.e. the highest Re attained 
in the experiments) is 2 x lo4. Apparently, the initial Re determines conditions that 
are felt even into the far-wake dynamics. The local, far-wake Re-variation with initial 
Re, shown in figure 21, demonstrates that some such effect exists. A reasonable 
interpretation is that the late-wake Re must be large enough to ensure essentially 
inviscid dynamics there. 

The issue of Re-dependence is of some relevance since one objective is to establish 
results that can be extrapolated to practical ocean applications. There is no Re- 
dependence in the postulated dynamics leading to the scaling arguments of equations 
(3.4)-( 3.6), and explanations cannot involve F-related physical processes, since the 
Re-dependence can be measured at constant F. The solution must be related to the 
initial range of scales available, or the way in which energy is distributed among them, 
and it is possible that some kind of self-similar cascading range must be established 
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so that the ultimately stable vortex patches can emerge from initial conditions that 
possess characteristics of an Re-independent turbulence. This requirement might 
also be regarded in terms of the disruption of small-scale anisotropies or breaking 
of local vortex loops and connections that serve in the long run to destabilize the 
wake structure. Certainly, the most noticeable trait of the low-Re wakes is their 
relatively disorderd state in the (x, y)-plane, and continued interactions amongst their 
component vortices lead to high-amplitude fluctuations about the mean profile. 

An interpretation can also be made that considers the transition from convective 
to absolute instability of the helical mode in the wake. Monkewitz (1988) showed that 
the first helical mode is absolutely unstable when Re > 3.3 x lo3 for (unstratified) 
bluff body wakes, and suggested that large-scale helical vortex shedding in the Re 
range [6 x lo3, 3 x lo5] noted by Achenbach (1974), could be driven by self-excited 
oscillation in the near wake. CH93b also noted an apparent strengthening of the 
spiral instability mode for Re 3 4 x lo3 and F 3 4.5 in stratified wakes. 

The somewhat limited evidence here suggests that the higher-Re data may be 
representative of a larger range of Re, where at least the wake-averaged scaling 
behaviour does not depend on Re. Although we assume the existence of such an 
Re-independent turbulence at sufficiently high Re, the issue remains controversial in 
some flows (e.g. Miller & Dimotakis 1991), and further careful measurements are 
required. 

The requirement for a minimum F seems intuititively reasonable and Spedding 
et al. (1996) gave a simple scaling argument for an expected minimum value of F 3 3 
for active turbulence on all scales in a stratified fluid. However, when Re-independent 
collapse in the turbulence data is achieved (figures 10, 12, 13, 14), it is over the 
entire range of F E] 1.2,30[, with no evidence that F = 4, or thereabouts, represents a 
critical or special value in this regard. Furthermore, although the dimensionless wake 
spacing, S t ,  is a function of F, and takes an initial value commensurate with helical 
shedding modes only at F 3 4 (figure 17), it is not a strong function of Re, at any 
given F. Therefore, if it is true that the initial S t  reflects the strength of the near-wake 
helical mode forcing, then this forcing is not strongly dependent on Re over the range 
Re ~]1216,9880[ (figure 17b,c). By the same token, if it is true that the strong global 
mode appears only at F 3 4, then it cannot provide a sufficient explanation for the 
Re-dependence in turbulence quantities, because the Re-dependent variations were 
measured at Froude numbers both higher and lower than this putative critical value. 

The general absence of Froude number dependence in the turbulence and mean 
wake profile data collapse (as noted above, in figures 10, 12, 13, 14), in local measures 
of (F), (Re) (figure 21), and in the geometry and evolution of individual vortex cross- 
sections (figures 22, 26) is rather surprising. At some sufficiently large value of F ,  the 
wake defect velocity ought to converge on the unstratified result, but such a trend 
was not observed for F < 30. At lower Froude numbers (typically 0.1 d F < 2), 
the strong influence of F on the near-wake shedding and wake development has 
been well-documented (e.g. Sysoeva & Chashechkin 1991; Chomaz et al. 1992; 
Lin et a1 1992; CH93b), but the late-wake measurements do not appear to reflect 
these changes. Two points need to be made: first, the power law measurements 
have only been made for the late wake, and at one measurement plane. It would 
be incorrect to conclude either that the power law behaviour is constant through 
early- and late-wake evolution, or that the same dynamics govern motions in the 
vertical. On the contrary, it is clear that in order for the mean centreline velocity 
to be both higher in magnitude and decaying at a similar rate to three-dimensional 
wakes, the earlier wake decay must have been much weaker. Furthermore, even 
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though the decay rates are the same as for three-dimensional wakes, the resemblence 
is superficial. We are far from three-dimensional turbulent motion in the late wake, 
where w << {u,u}. The dynamics of motions effectively confined to a plane might 
be thought of as essentially two-dimensional, and comparisons with two-dimensional 
turbulent motions are inviting. But the dynamics are not two-dimensional either (the 
decay rates of L,/D and Uo/U with x /D in table 2 are more than two standard 
deviations away from the 1/2 and -1/2 values expected in a turbulent plane wake), 
and the dynamics governing the vertical wake growth, as considered carefully in 
CH93a, can be expected to modify the horizontal growth rates. It looks as though 
these particular results will not be fully understood until simultaneous, quantitative 
measurements of the vertical structure and evolution have been made, and for earlier 
times that precede the quasi-two-dimensional motions. 

4.3. Detection criteria 
The detectability and persistence of a given wake flow depends on the mean defect 
magnitude, the wake width and geometry (i.e. distribution of o,(x,y)). It is interesting 
to note, therefore, that while the increase in dimensionless wake width with time scales 
as three-dimensional wakes do, the stratified wake is narrower than the homogenous 
wake, increasingly so as F decreases, i.e. as buoyancy forces become more significant. 
We have shown here, for the first time, that the mean centreline velocity is up to one 
order of magnitude higher than for the same unstratified wake flow, consistent with 
the one data point that can be inferred from the existing literature. 

Both obervations can be attributed to the high degree of order in the wake, which 
is composed of arrays of vortex patches that do not move far from the centreline. It 
appears to be a naturally preferred arrangement, in that the ordered array emerges 
from an initially very disorganized, turbulent flow. Even at the highest F and Re  
(about 30 and 2 x lo4, respectively), an ordered array of vortices results, and maintains 
the mean wake flow for much longer than would otherwise be the case. A preferred 
topology of wake vortices could also explain the reduced wake spreading rate. 

An immediate practical consequence of the tightly packed, structured array, is 
that mean wake-averaged energy and enstrophy densities can be detected above 
experimental noise for very long times, equivalent to 12 days in a stratified ocean. 
The pattern of o,(x,y) is also observable for such periods. Because the wake vortices 
persist as coherent material patches, inhomogeneities of passive scalars, once trapped 
in a vortex core, could remain at concentrations significantly above ambient for 
extended periods. Such scalars could include trace chemicals from the body, or 
plankton in the environment. 

4.4. The geometry of the uorticityJield 

4.4.1. Reduced spatial intermittency 
Some of the statistical or wake-averaged quantities above can be related to the wake 

structure and geometry through the general concept of reduced spatial intermittency. 
Since the vertical velocity, w, is effectively zero, there is no temporal variation in the 
z-location of the wake. Consequently, if kinetic energy cannot propagate or fluctuate 
strongly in the vertical (this is almost true at late times when the internal wave motions 
are of low amplitude), owing to the confining effects of stratification, and since the 
lateral growth rate is not correspondingly increased, then the local wake energy density 
close to the centreline must be correspondingly increased. Alternatively, if one thinks 
of the stratified wake as a collapsed helical structure, then the concentration of wake 
motions onto the centreplane will increase the energy density there. 
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4.4.2. Vortex cross-sections 
Measurements of o , ( r )  in the centreplane indicate that individual vortex profiles 

have close to Gaussian shape over most of the range of F ,  Re and Nt discussed 
here. The result is applicable only to those vortex structures that have formed as 
separate features, and deliberately excludes from consideration all those that are 
being deformed due to strong interactions with neighbours. The statistics of the 
low-Re, wake-averaged quantities differ from their high-Re counterparts not because 
the vortices are fundamentally different in cross-section, but because they undergo 
more frequent, strong, interactions with nearby vortices. A Gaussian vortex core 
distribution would be a good model approximation for any of the flow fields. The 
cross-sections are circular in the absence of any external strain field. 

The apparently universal structure may suggest some general physical explanation, 
and diffusion of vorticity could account for a similar smoothing of all steep vor- 
ticity gradients over the long time scales of the present experiments. However, the 
growth/decay rates of vortex radius, maximum vorticity and circulation do not agree 
well with the most simple two-dimensional viscous diffusion model, but instead reflect 
the same scaling behaviour as the wake as a whole. This includes the lack of collapse 
of the low-Re data. The need for a more realistic, three-dimensional model seems 
clear. 

G. R. Spedding, F. K.  Browand and A. M.  Fincham 

4.4.3, Vortex interactions 
In the measurement plane, the most noticeable vortex-vortex interactions were 

between like-signed neighbours. Usually two were involved; occasionally, at early 
times, three. The Strouhal number in the late wake decreases with time as successive 
mergers decrease the number of vortices per unit length in X .  S t  is independent of 
Re (within experimental uncertainty) over the range of Re studied, and was found 
to decrease with F- ' /3 ,  consistent with the scaling behaviour of the other measured 
length scales: the wake width, Lw, and the vortex radius, 1,. Mutual deformation 
and loss of vertical axisymmetry were observed during merging events, but afterwards 
the remaining single vortex would quickly relax back close to a circular geometry, 
without any further pairing interactions. 

Vortex couples (Couder & Basdevant 1986), dipoles (Voropayev & Afanasyev 1992; 
Fl6r & van Heijst 1994; FlGr, van Heijst & Delfos 1995) and quadrupoles (Voropayev, 
Afanasyev & van Heijst 1995) are frequently discussed as canonical objects in terms 
of which more complex flows may be described, but the wake vortices here show little 
tendency to preferentially form such groupings. In particular, isolated couples which 
can progagate far from their original point of origin do not emerge. When couples 
can be identified in these experiments (e.g. for convenience in figure 25), they do not 
appear to be dynamically distinct entities. Instead, there appears to be a degree of 
structure and coherence to the whole wake. 

4.4.4. Vertical structure 

It is well established that strongly turbulent patches in a stable stratification develop 
into distinct layers that are limited in vertical extent by the background stable density 
gradient (e.g. Browand et al. 1987). The inhibition of vertical scales of motion as a 
function of internal Froude number in turbulent wakes of towed and self-propelled 
slender bodies was reported by Lin & Pao (1979), who also noted the development 
of layered motions in stratified wakes. CH93a discuss the different wake regimes that 
occur with different F ,  designating F = 4.5 (as defined here) as a nominal critical 

Vertical layers in stratijied wakes 
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value above which multiple layer formation can be expected. Since our investigation is 
thus far confined to measurements along an isopycnal, deductions concerning vertical 
structure are limited, but a self-consistent and testable model can be proposed. 

How many layers? 
There is no hard evidence for the number of layers in 
it varies with F .  A first estimate can be made through 
argument, where the maximum vertical scale, 10 is 

where 1 is a turbulent integral length scale and E is the 
rate. If we assume that initial turbulent length scales are 

stratified wakes, and how 
the Osmidov length scale 

kinetic energy dissipation 
proportional to the sphere 

diameter, D, then the number of layers per unit diameter canbe  written 

The number of layers increases with decreasing F .  CH93a observe a minimum F 
required for multiple layer formation, arguing that only at sufficiently high F can 
the spiral instability mode be fully active over an extended vertical range, and the 
individual collapse of subranges provides the breakup into distinct layers. The two 
arguments together imply the existence of a value of F 'v 4 that gives a maximum 
number of layers. Much remains to be learned concerning their formation and 
dynamical significance. 

Three-dimensional geometry 
Indirect evidence suggests a plausible three-dimensional structure that can be tested 
in future investigations. The vertical vorticity has been comprehensively described, 
but what then becomes of the vortex lines? When exterior boundaries are far away, 
vortex lines must reconnect to form closed loops. Related experiments indicate how 
this may occur. 

Fincham, Maxworthy & Spedding (1996) proposed a model for a preferred ar- 
rangement of densely packed, discus-shaped vortex patches in decaying, stratified 
grid turbulence, where vortex lines are free to meander through nearby patches in 
both horizontal and vertical directions. The model was supported by data in vertical 
slices that revealed the predicted horizontal vortex sheets between layers. The vertical 
correlation of vortex structures at different heights behind a single vertical bar was 
also investigated (see Fincham 1994) by injecting green and red dye at z = H / 3  and 
2 H / 3  respectively (where H is the total fluid depth) at the separation point. Although 
initially correlated, the wake vortices quickly took up locations that were 180" out of 
phase with respect to their like-signed neighbours in z, and remained there. 

Consequently, the following arrangement of vortex lines in a stratified bluff body 
wake can be proposed. In a single layer, vortex lines can connect in a chain of vortex 
loops (figure 28a), whose vertical extent is controlled by the stratification, as argued 
above. It is a stratified equivalent of a KarmAn vortex street. When there are multiple 
layers, successive lamina in z are not completely decoupled, but have preferred offset 
locations, so that wake vortices reside in arrays that are staggered in both horizontal 
and vertical directions. Figure 28(b) shows a schematic for the topology for two layers. 
The model is fully consistent with the observed distribution of a, in the centreplane 
(certain alternative configurations can be ruled out from the a Z ( r )  profiles of figures 22 
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FIGURE 28. (a) Vortex lines loop between opposite-signed partners in a stratified version of the 
classical Karman wake, where the Osmidov scale, lo, controls the vertical thickness. ( b )  The vortex 
loops of part (a)  are labelled A, B and C. A second layer has been added, with one loop (D) shown 
in short dashed lines. Possible connections are no longer restricted to within each layer, and D can 
connect up to C and A through lines I and 11, and similarly, A can pass via I11 to the lower layer. 

and 23). Judging by the persistent, compact nature of oz(x, y) reported here, the wake 
structure is very robust, and it is possible that stratification enforces a proximal 
bending of vortex lines that promotes local interconnections. Once formed, the chain 
does not break easily. 

The single-layer model of figure 28(a) is topologically quite similar to the one 
proposed by Pao & Kao (1977), except that no special assumption is made here 
concerning the origin of the vortex structures from the sphere surface. On the 
contrary, a minimum Re appears necessary for the formation of such an ordered 
array, so fully turbulent flow must be initially present in the near wake. Preceding 
arguments suggest also a minimum F requirement, but measurements reported here 
do not clearly show it. 

Once formed, the multilayer wake is neither a series of decorrelated, largely 
independent horizontal layers, nor a stack of loosely correlated patches that are 
coupled and uniform in the vertical, but rather a quite closely coupled series of 
interconnected vortex patches that reside in particular offset locations with respect to 
their neighbours above and below. An analogy can be made with a necklace, where 
vortex lines weave in and out through neighbouring wake elements, or vortex patches, 
within and between layers. The necklace wake is a naturally-preferred arrangement 
of high-aspect-ratio vortices in a stable stratification, one that emerges from turbulent 
and disordered initial conditions. 
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Dynamical significance 
Fincham et al. (1996) demonstrated that vertical layering in stratified grid turbulence 
is responsible for a large fraction of the kinetic energy dissipation. The surfaces of 
constant dissipation are highly anisotropic, up to 90% of the dissipation originating 
at thin horizontal vortex sheets. Recalling the collapse of wake turbulence quantities, 
the exceptional case was in the kinetic energy dissipation rate, cZ, as measured by 
horizontal gradients of horizontal velocity. E ,  does not show the same collapse as the 
other data, or the same failure to collapse at low Re. The fact that E ,  does not scale 
as the actual kinetic energy does argues for the comparative unimportance of this 
term in the total dissipation budget, which may again be dominated by inter-layer 
shearing. It is unclear as to how the anisotropy of the terms contributing to the total 
dissipation, E ,  will affect arguments that assume E - u3/ l  (for example, those leading 
to equations (3.6),(4.1)). 

4.5. Open questions 
It is quite clear that a full understanding of the stratified wake problem requires a 
three-dimensional model and corresponding three-dimensional data. The tentative 
model sketched out above can be explicitly tested with vertical profiles that will show 
the magnitude of the horizontal vorticity components, and how (and whether) the 
development of layers occurs. 

It is possible that the special geometry and topology of vortex lines in the towed 
sphere wake does not generalize to other configurations, or to more general problems 
of the evolution of isolated turbulent patches (although the similarity with the phe- 
nomena described by Fincham et al. (1996) argues against this pessimistic view). It 
will therefore be instructive on both fundamental and applied practical levels to per- 
form similar measurements on different body geometries and generating conditions : 
slender and/or self-propelled bodies come to mind. 

With regard to practical application, and generalization of these results to oceano- 
graphic problems, it is especially important to attempt to model high-Re flows. This 
has been a point of contention in extending laboratory-based results and reconciling 
them with field measurements (e.g. Gargett, Osborn & Nasmyth 1984). The require- 
ments of a reasonable range of scales, and/or global resonance of the helical shedding 
mode have been proposed as possible explanations for the departure from similarity 
of the low-Re wakes. An Remin = 5 x lo3 appears to be a necessary condition, but 
similar scaling of most measures was obtained over all F E [l, 301, the exception being 
the late-wake streamwise spacing. Presumably, at some sufficiently high values of F ,  
the wake will be indistinguishable from an unstratified wake. This should be tested. 
Likewise, extension to higher Re beyond the current maximum value of 2 x lo4 would 
be highly reassuring. 

The support provided by ONR Grant no. NOOO14-92-5-1062, administered by Dr 
L. P. Purtell, is most gratefully acknowledged. 

Appendix. Retrieval of image data via internet 

Wide Web, at URL: 
Images of wZ(x, y ,  t )  and d,(x, y ,  t )  can be viewed and/or downloaded on the World 

http://ae-www.usc.edu/rsg/gfd/wakesindex.html 

The images are in G I F  or JPEG format, and have been compressed, with some 
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information loss. { R e , F )  pairs in the range Re E [103,2 x lo4], F E [1,30] can be 
selected from a forms table, and an INFO button for each {Re ,F}  pair details the 
exact experimental conditions, including N t  for each frame in the time series. 
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