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A numerical investigation of the near wake of a sphere moving horizontally through
a linearly stratified fluid is presented. Simulations are first performed on a flow
with Reynolds number Re = 200 for a range of internal Froude number, 0.1 ≤
Fr ≤ ∞. The simulations capture buoyant characteristic behavior, the presence of
vortex shedding at low Fr , and lee waves. Simulations at higher Reynolds number,
Re = 1000, for 1 ≤ Fr ≤ ∞ provide a description and parametrization of the near
wake, including the density field. At Re = 1000, the effects of utilizing two different
averaging techniques in the unsteady near wake region are discussed. Perturbation
quantities in the stratified near wake are anisotropic, and based on the oscillations
of the centerline vertical perturbation velocity, the Fr at which the stratified near
wake may be considered indistinguishable from the uniform density near wake is
suggested to be O(100). Parametrization of the near wake is accomplished using the
parameterized vertical wake height, downstream distance from the sphere, and Fr as
parameters. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915139]

I. INTRODUCTION

A large volume of work has been produced on the wake of submerged bodies travelling hor-
izontally through stably stratified fluids of linear density gradients. The internal Froude number,
Fr, characterizes the undisturbed density gradient of the fluid stratification and is defined as the
ratio of the submerged body speed to the product of its characteristic vertical length scale and the
Brunt-Väisälä frequency of the fluid. The Reynolds number, Re, is the viscous similarity parameter
for the submerged body, and it is defined as the ratio of the body speed and length scale to the
viscosity of the fluid.

One of the distinctive features of this stratified flow, as opposed to the flow of a uniform
density fluid, is that the stratification produces a gravity-induced restorative buoyancy force due to
the displacement of particles away from their original hydrostatically balanced equilibrium posi-
tions. When the wake is oriented horizontally, this buoyancy force breaks the full axial symmetry
of the wake around the submerged body and may directly affect physical flow features ahead,
around, and behind the body. Although many experimental configurations for the travelling body
can be employed, the sphere is identified as a canonical configuration in the study of far wake
characteristics.1,2
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The wake of a sphere traveling horizontally through a linearly stratified fluid is categorized
into three major regions: the near wake, the non-equilibrium (NEQ) regime,3 and the far wake,
also noted as the quasi-2D (Q2D) regime.3 Each of these regions has been studied experimen-
tally, analytically, and numerically, but until now, there have been no detailed descriptions of
self-contained multiple field components in the near wake of the sphere for any fluid of significant
stratification.

The current work is motivated by ongoing computational efforts to model the flow field devel-
opment of the wake of a linearly stratified fluid flow around a sphere. The first numerical study to
include a sphere explicitly within the computational domain for a linearly stratified flow is that of
Hanazaki.4 Hanazaki performed steady, Re = 200 simulations across a wide range of Fr = [0,200]
to study the effects of lee waves and stratification on the sphere itself. Recently, two quantitative
studies have explicitly accounted for the presence of the sphere inside the computational domain for
high Reynolds number simulations. Rottman et al.5 performed simulations for Fr = {1,4} by use of
an immersed boundary method. Second, Pasquetti6 performed “large eddy simulation (LES)-like”
simulations at Re = 104, Fr = 50, accounting for the sphere with a “pseudo-penalization” method.

Other recent interest with respect to wake simulation in stratified flows is in the quantitative
analysis of wake generated internal waves and the formation of far wake “pancake” eddies. Fung
and Chang7 performed turbulence modelling of the far wake with anisotropic closure schemes and
studied the formation of pancake eddies and the free surface response to their presence. Gourlay
et al.8 continued the numerical investigations on the formation of the pancake eddies by using
direct numerical simulation (DNS). Their Re = 104, Fr = 10 simulations showed that the far wake
pancake eddies eventually form without the prior presence of coherent structures. The success of
these simulations has encouraged successive simulations of the NEQ and far wake regions. Addi-
tional simulations investigating the NEQ and far wake using DNS,8,9 LES,10 or multi-domain spec-
tral element penalty methods11,12 also initialize their stratified wake simulations without explicitly
accounting for the sphere.

There is a continued interest in development of numerical stratified wake simulations, and
related studies show a trend of considering the computational domain to represent a region that is
physically close to the sphere, most commonly associated with the near wake region. The exact
initial conditions and initialization procedures have varied: ad-hoc representation of the sphere,7

experimental fits of uniform density wakes,8–10,13 and extrapolation of post-NEQ experimental
data.11

Each numerical study that initializes its simulation without explicitly accounting for the sphere
utilizes an additional relaxation procedure8–12 to allow the turbulent velocity field to develop prior to
analyzing the subsequent integration of the governing equations. Equipartition of turbulent energy is
assumed during the initialization process, and an initial density field is not specifically prescribed.
Pasquetti6 initialized a far wake simulation by interpolating the wake of a sphere explicitly within
the domain and found that the time/distance behind the sphere at which the pancake eddies form
could change by a factor of 5.6

This work is a successor to that of Hanazaki4 because the sphere is explicitly accounted for
in the simulation domain, and the wake features are unsteady. Initially, simulations at Reynolds
number of Re = 5000 were performed using Detached Eddy Simulations (DESs), and the results are
reported elsewhere.14 However, to limit uncertainties due to turbulence modelling, the simulations
reported here are focused at lower Re = 1000, without relying on turbulence modelling or immersed
boundary treatments, and a self-consistent data field of velocity and density is collected. Despite
difference in Reynolds numbers, DNS and DES results are in a qualitative agreement, suggesting
that the collected database may be useful even at Re larger than 1000. Capturing the density field
within the wake is challenging to obtain experimentally across a wide range of stratified fluids
because experimental studies of the wake density have typically used conductivity probes and/or
rakes.15–18 Computational investigations that explicitly contain the sphere are in an advantaged posi-
tion to generate the entire velocity and density field across a wide, uncoupled (a useful feature19)
parameter space in an efficient manner.
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II. PHYSICAL PROBLEM

The stable, linearly stratified fluid is governed by the incompressible Navier Stokes equations
in the Boussinesq approximation.6–13 The non-dimensional governing equations are

∂u⃗
∂t
+ u⃗ · ▽⃗u⃗ + ▽⃗p − 1

Re
▽2u⃗ +

ρ′

Fr2
D

k⃗ = 0, (1)

▽⃗ · u⃗ = 0, (2)
∂ρ′

∂t
+ u⃗ · ▽⃗ρ′ − w − 1

Pr Re
▽2ρ′ = 0. (3)

Non-dimensionalization is achieved by defining

t = t∗
U∗s
D∗

, x⃗ =
x⃗∗

D∗
, u⃗ =

u⃗∗

U∗s
, p =

p∗

ρ∗oU∗s
2 , ρ′ =

ρ′∗
−D∗ ∂ρ∗(z)

∂z

 . (4)

By convention, all quantities denoted by an asterisk are dimensional. Non-dimensional time is t, and
U∗s and D∗ are the sphere speed and diameter, respectively. The reference density of the fluid is ρ∗o.
The spatial coordinates are x⃗ = (x, y, z) and the flow field velocity vector is denoted u⃗ = (u, v,w)
and the perturbation pressure is denoted by p. The density perturbation is normalized by ∂ρ∗(z)/∂z,
which is the upstream, undisturbed fluid density gradient and is constant in a linearly stratified fluid.
All vectors are defined in the standard Cartesian basis set {î, ĵ, k̂}, where î is directed opposite to the
steady motion of the sphere and x = 0 is located at the sphere center. Field quantities (i.e., u⃗, p, and
ρ′) vary with space and time.

To obtain Eq. (1), the fluid density is decomposed, and hydrostatic balance is used to equate a
background pressure gradient with a background stratification,

ρ∗(x⃗, t) = ρ∗0 + ρ∗(z) + ρ′∗(x⃗, t), (5)

P∗(x⃗, t) = P∗(z, t) + p∗(x⃗, t), (6)

∂P∗(z, t)
∂z

= −g∗ρ∗0 − g∗ρ∗(z), (7)

where P∗(x⃗, t) is the total pressure and P∗(z, t) is a background pressure. The total density field
is ρ∗(x⃗, t), ρ′∗(z) is the undisturbed vertical density distribution, and g∗ is the sole component of
gravity in the −k̂ direction.

The non-dimensional parameters are

Re =
U∗sD∗

ν∗o
, Pr =

ν∗o
κ∗o

, Fr =
U∗s

N∗R∗
≡ 2

U∗s
N∗D∗

= 2FrD,

where Re is the Reynolds number, Pr is the Prandtl number, κ∗o is a constant reference thermal
diffusivity of the fluid, ν∗o is a constant reference viscosity, ρ∗o is a constant reference density, and R∗

is the sphere radius.
The constant Brunt-Väisälä frequency is denoted by N∗, in units rad s−1, and defined for the

Boussinesq fluid by

N∗ 2
= −D∗

g∗

ρ∗o

∂ρ∗(z)
∂z

. (8)

The Prandtl number is a fluid property and represents the ratio of momentum to thermal diffu-
sivity of the fluid. Typically, the Re is an indicator of the range of all dynamic scales present in
the fluid flow. If Pr > 1, then the range of dynamic scales for the density in Eq. (3) is larger than
for the velocity in the Navier-Stokes equations, Eq. (1), at given Re. In numerical simulations, this
requires higher spatial resolution than implied by the value of the Reynolds number only. To avoid
this difficulty, we are setting Pr formally to unity, with the expectation that the current simulations
correctly represent the large scale flows in the near wake region of thermally stratified water at a
Pr = 7, or even a salt-stratified water at a Pr ≃ 700, but are not expected to resolve the finest scale
details of the scalar field that are present in such fluids.
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The square of the internal Froude number, Fr, may be viewed as a representation of mean
kinetic energy to the energy required for a particle to move over the top of the sphere in the z = 0
plane, but Fr is representative of other buoyant characteristics of the flow. As reviewed by Hopfinger
et al.20 and Bonneton et al.,21 with respect to a reference frame attached to the steadily, horizontally
translating sphere, a characteristic, stationary lee wave has a frequency

ω∗b = U∗s k∗, (9)

where k∗ is the horizontal wave number of dimension m−1 and ω∗
b

is the buoyancy frequency
in units rad s−1. The maximum buoyancy frequency of the fluid is ω∗

b
= N∗, and if Eq. (9) is

non-dimensionalized by defining k = k∗D∗,

k = ω∗b
D∗

U∗s
=

N∗D∗

U∗s
= 2Fr−1, (10)

and Fr is a measure of a characteristic buoyant wavelength in the lee of the sphere. In this steady,
linear approximation, a stationary lee wavelength, λ, is defined λ = 2πk−1 ≡ πFr.

III. NUMERICAL METHOD

The numerical method solves the discretized form of Eqs. (1)-(3) in generalized curvilinear
coordinates on a non-staggered grid using an alternating direction implicit fractional step method22

within a parallelized framework.23 The pseudo-transient residuals are based on ∆Q⃗max, where
Q⃗ = (u, v,w,p, ρ′) represents the primitive variables, and each element of ∆Q⃗ is required to be less
than or equal to 10−4 to obtain the unsteady converged solution within each physical time step. The
required iterations to converge vary between each Fr case but are typically O (100) in the Re = 1000
cases.

For low Fr cases, sufficient resolution of the Brunt-Väisälä frequency, represented by Fr, may
dictate choice of time step, ∆t. For the Re = 200 case, which is steady in the uniform density fluid,
the resolution of unsteady mechanisms related to Fr is virtually guaranteed. For the Re = 1000
cases, the Strouhal number, St, of the unsteady motion of the separation point and unsteady vortex
shedding into the near wake is expected to be St ≃ 0.19 for the uniform density case.24 Because
the Re = 1000 simulations are performed for Fr ≥ 1, the buoyancy frequencies are assumed to be
equivalent or less than that of the large scale frequencies of the wake. Choices of time step for the
low resolution Re = {200,1000} simulations are shown in Table I.

The grid is generated with orthogonal spherical coordinates θ, φ, and r , which correlate to
computational coordinates ξ, η, ζ ,

r = rmin +

(
rmax −

1
2

)
*.
,

tanh k1

(
ζ−1

ζmax−1 − 1
)

tanh k1
+ 1+/

-
, (11)

θ = π
ξ − 1

ξmax − 1
, (12)

φ = 2π
η − 1

ηmax − 2
, (13)

subsequently,

x = r cos θ, y = r sin θ cos φ, z = r sin θ sin φ, (14)

TABLE I. Choice of ∆t for each Re/Fr pairing.

Re= 200 Re= 1000

Fr 0.10 0.15 0.20 0.275 0.35 [0.40,∞] [1.0,∞]
∆t 0.005 0.005 0.01 0.0125 0.0125 0.025 0.01
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where computational coordinates ξ, η, ζ vary from 1 to ξmax, ηmax, ζmax, respectively, r = r∗/D∗,
and parameter k1 = 3.8 is chosen to resolve the thinnest laminar boundary layers of interest and,
consequently, causes grid refinement closer to the sphere.

Polar singularities located at ξ = {1, ξmax − 1} are extrapolated from the interior of the do-
main.25–28 The periodic, azimuthal direction has overlapping grid points located at (η = 1, ηmax − 1)
and (η = 2, ηmax). At the surface of the sphere, ζ = 1, a no-slip boundary condition for velocity,
u⃗ = 0⃗, is implemented and a zero normal derivative, ∂ρ′

∂n⃗
= 0, for the scalar ρ′. The sphere surface

is at rmin = 0.5 and domain inflow/outflow boundaries are at rmax = 60. Inflow boundary condi-
tions are applied at ζ = ζmax from 0 ≤ θ < 0.55 π where u⃗ = (1,0,0) and ρ′ = 0. Outflow boundary
conditions are applied at ζ = ζmax from 0.55 π ≤ θ ≤ π.

A damping layer is present in the simulations due to the potential of numerical boundary
reflections of internal waves that are generated by the sphere and its wake. The layer is implemented
by adding a forcing term to the governing equations, Eqs. (1) and (3),

GE(Q⃗) + f (x⃗)(Q⃗ − Q⃗ave) = 0, (15)

where GE is the governing equation for any component of Q⃗ = (u, v,w, ρ′) and f (x⃗) contains the
spatially varying damping coefficient. By choice, Q⃗ave = (U(x⃗),0,0,0), where U(x⃗) is the spatially
varying, time-averaged stream-wise velocity component. The damping coefficient is zero for x ≤
15, |y | ≤ 8, |z | ≤ 8 and reaches its maximum just before the outer domain limits. The long length
of this layer along with the gradually varying damping coefficient, in conjunction with a sufficient
placement of nodes within the damping layer, mitigates numerical reflection of waves from the
computational boundary and their interaction within the computational region of interest.29

Most runs are performed using a grid size of Nξ × Nη × Nζ = 120 × 120 × 201 (the standard
resolution). The equations of motion, Eqs. (1) and (3), are solved directly without any additional
explicit turbulence modelling. Convective terms for the governing equations are discretized us-
ing a 2nd order upwind scheme. These simulations span a fairly wide parameter space of Fr for
Re = {200,1000}.

Two additional simulations at Re = 1000 and Fd = {4,∞} are performed with a higher resolu-
tion of Nξ × Nη × Nζ = 180 × 180 × 501 grid points using 5th-order upwind scheme and an hyper-
bolic stretching function for the polar grid point distribution similar to the radial one in Eq. (11),
similar to Mittal.30 The radial stretching parameter in these two cases is modified to k1 = 3.3, and
the polar stretching parameter is 1.5. This distribution concentrates two-thirds of the grid points
behind the sphere, increases the uniformity of the grid point distribution along the wake centerline,
and increases the grid resolution over the standard resolution cases by about a factor of 10.

There are several potential sources of uncertainties in the current simulations such as a presence
of damping layers to control reflection of waves from the computational boundary and a resid-
ual numerical dissipation associated with upwind schemes employed. The numerical dissipation
sometimes may play a role similar to the role of subgrid-scale models in LESs, resulting in the
so-called implicit LES (ILES) or no-model LES. Such methods can accurately capture the larger
scales of a flow but cannot accurately predict small scales on the order of a grid size. Quantifying
these effects is difficult, e.g., the numerical dissipation depends on the mesh size, time step, and
the flow itself. To gain confidence in the simulation results, we use traditional, indirect validation
procedures by running some cases on different meshes, described above, and comparing our results
with experimental results and other numerical simulations.

IV. RESULTS

A. Uniform density fluid

The wake of a sphere travelling steadily through a uniform density fluid at Re = 200 is
commonly studied.25,31,32 The wake is considered steady and generates an axisymmetric recir-
culation region attached to the lee of the sphere. The lower resolution simulations indicate that
the non-dimensional length of this laminar recirculation region, measured from the center of the
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FIG. 1. Re= 1000, Fr=∞. (a) Sampled stream-wise drag coefficient. Top—low resolution, bottom—high resolution. (b)
Power spectra of time history of u at x ≃ 5. Top—low resolution, bottom—high resolution. (c) Uo is the centerline, mean
stream-wise defect velocity. (d) u′o is the centerline rms stream-wise perturbation velocity. (−) low resolution, (−−) high
resolution, (− ·−) Tomboulides and Orszag,24 (X) Wu and Faeth33 at Re= 930.

sphere, is Lb = 1.95. The stream-wise drag coefficient is CDx = 0.757. Both of these quantities are
consistent with prior findings.25,31,32

At Re = 1000, the uniform density flow is unsteady and very close to the near-transition
region.34 Samples of CDx produced by the low and high resolution simulations are shown in
Figure 1(a). The two curves are aligned for comparative purposes. The differences are in peak
magnitudes and the higher frequency oscillations between the two cases. Overall, these two curves
show similar quantitative and qualitative behavior. The time-averaged stream-wise drag coefficient
in the standard resolution simulation is CDx = 0.466 and the high resolution simulation produces a
CDx = 0.460, which is comparable to experimentally reported values.35

Four probes are placed in the wake at x = 5.75 and in the vertical and horizontal planes about
the wake centerline at a distance of rp = 0.6 in the high resolution simulations and x ≃ 5,rp ≃
0.675 in the low resolution ones. The power spectrum of u(x⃗, t) is averaged between the probes
and produces the spectrum shown in Figure 1(b). The strongest frequency for both resolutions is at
St = 0.191. This is the Strouhal number associated with the primary vortex shedding and the overall
structure of the wake. Both simulations capture a shear instability frequency34,36 at St = 0.36, shown
in Figure 1(b). The high resolution case peak is more prominent, perhaps due to the position of the
probe placements.

Values of the mean stream-wise centerline velocity defect, Uo, and root-mean-square (rms)
stream-wise velocity perturbation component are shown in Figures 1(c) and 1(d). There is a fairly
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good agreement among all plotted cases for the rms stream-wise velocity. Similarly, the unsteady
recirculation region length based on the inflection of Uo about 1 is measured to be Lrr ≃ 2.25,
which agrees with prior investigations.24,37 The curves for Uo in the high resolution and stan-
dard resolution simulations overlap up to x ≈ 5 and diverge at larger x with the difference at the
maximum x = 15 about 0.02, which is on the order of 1% − 2% of the peak value of Uo in the
domain. There is also similar measure of error in Fig. 1(c) between the spectral results and the
high and standard resolution simulations along the centerline, with the spectral results below our
data. These differences may be due to the fact that spectral methods have negligible numerical
dissipation while most other common methods, such as finite difference and finite volume, are often
burdened by unknown numerical dissipation because of the truncation errors of a numerical scheme
that diminishes with increasing resolution much slower than for spectral methods.38 In Fig. 1(c),
values of Uo at x = 15 decrease for decreasing (presumed) numerical dissipation, similar to the
observed trend in experiments of Wu and Faeth33 where results for Re = 930 lie below results for
Re = 300, i.e., results for the case with less physical, viscous dissipation, are below data for the case
with higher physical dissipation. Further discussion of the near wake characteristics is deferred until
Secs. IV D, IV F, and IV G.

B. Re = 200, linearly stratified fluid

A natural starting point is to compare simulation results with Hanazaki4 at Re = 200. The flow
field is steady, except in the case of very stratified flows which should exhibit unsteady vortex shed-
ding.39 Results obtained for time-averaged ∆CDx as a function of Fr are presented in Figure 2(a)
where

∆CDx = CDx(Re,Fr) − CDx(Re,∞), (16)

where CDx(Re,∞) is the stream-wise drag coefficient of the sphere in a uniform density fluid at a
particular Re. The overbar of ∆CDx denotes a time-averaging for the unsteady cases. By Eq. (16),
∆CDx represents the change in drag coefficient of the sphere due to the stratification of the fluid.
The simulation agrees with prior investigation4,5,40 values of ∆CDx for Fr & 0.5. When Fr . 0.5,
the current simulations disagree completely with Hanazaki,4 corroborate those of Rottman et al.,5

and generally reproduce the results of Lofquist and Purtell40 until Fr < 0.2.
When Fr < 0.5, the flow has a horizontal orientation, and vertically oriented, coherent vortices

are shed, as seen in Figure 3(a), whereas when Fr ≥ 0.5 in Figure 3(b), there is no vortex shedd-
ing. At Fr = 0.2, the simulations produce a Sty = 0.19 at Re = 200. Chomaz et al.39 also noted a

FIG. 2. (a) Change in stream-wise drag coefficient due to stratification. (−) Hanazaki,4 (−−) Lofquist and Purtell,40

{× (low-res),+ (med-res)} Rottman et al.,5 low resolution simulations at (•) Re= 200, △ Re= 1000. (b) Calculated λ:
(−) Hanazaki,4 (−−) linear theory, low resolution simulations {+, △,•} at z = {0.5,1.0,1.5} for Re= 200, � at z = 1.0 for
Re= 1000.
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FIG. 3. Re= 200. Instantaneous vertical vorticity, ωz, on plane defined by z = 0: (a) Fr= 0.4, (b) Fr= 0.5.

general Strouhal number of approximately 0.2 at Re = 2000 and Fr = 0.3. In this regime, there are
small-amplitude oscillations of the stream-wise drag coefficient where Stx ≃ 2 Sty = 0.37, as shown
by Figure 4. Simulation results are in agreement with experimental values40 of ∆CDx until Fr < 0.2.

When Fr < 0.2, the current simulations likely have an insufficient resolution for this severely
stratified fluid. The current simulations and the low-resolution simulations5 at Fr = 0.1 concur with
a value of ∆CDx ≃ 0.80. Between the low- and mid-resolution cases5 at Fr = 0.1, the discrep-
ancies in ∆CDx and experiment40 tend to disappear, indicating that increased resolution in future
simulations would allow further investigation into these very low Fr flows if they were of interest.

It may be suggested4,41,42 that a Re effect accounts for the discrepancy between experimental
data40 and the computations of Hanazaki.4 For Re = 200, current results remain consistent with
experiments until low Fr values. Review of the experimental data40 indicates that for Fr . 0.25, the
highest Re case is Re ≃ 550, and the lowest Re case is Re ≃ 175 at Fr = 0.125. Flow at these Re
is not considered turbulent for uniform density fluids. Turbulent fluctuations in the wake typically
occur around Re = 1000,34 and a Re dependence does not sufficiently explain the discrepancies
between the ∆CDx curves.

The current simulations show (see Figure 2(b)) comparable λ values to both Hanazaki4 and
linear theory. Measurements of λ are calculated by the distance between inflections of w(x⃗, t) =
W (x⃗) = 0 (i.e., Figure 5) at different vertical heights on the plane y = 0 at z = {0.5,1.0,1.5}. The
overbar indicates time-averaging for the unsteady flow cases. Considering the differences between
∆CDx evident in Figure 2(a) and the agreement on λ in Figure 2(b), sufficient resolution of the lee
waves is also not a cause for discrepancy with Hanazaki4 when Fr < 0.5.

FIG. 4. Re= 200, Fr= 0.4. (−) CDx, (− ·−) CDy, (−−) CDz. (a) Components of drag coefficient. (b) Power spectra (CDz

omitted).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  68.181.99.188 On: Mon, 24 Aug 2015 17:22:06



035113-9 Orr et al. Phys. Fluids 27, 035113 (2015)

FIG. 5. Contours of instantaneous vertical velocity, w, on plane at y = 0. The sphere is centered at x = y = z = 0. Re= 200:
(a) Fr= 1, (b) Fr= 2, (c) Fr= 4. Re= 1000: (d) Fr= 1, (e) Fr= 2, (f) Fr= 4.

By Figure 2(b), there is no significant departure of calculated lee wavelength from linear theory
due to the vortex shedding. Brighton43 postulated that there is a lack of direct interaction be-
tween lee waves and vortex shedding, and this is partly confirmed as the Hanazaki4 low-resolution
(32 × 32 × 62) simulations are able to reproduce the expected λ values in Figure 2(a) but not the
experimental ∆CDx seen in Figure 2(b).

In the range of highly stratified, Fr ≃ 0.2, to uniform density fluids, Fr = ∞, the current
simulations accurately reproduce the characteristics of a stratified fluid. Results for Re = 1000 are
focused on Fr ≥ 1. Severely stratified cases, Fr < 0.2, require higher numerical resolution and are
not of current interest. All further discussions revolve around the Re = 1000 flow, unless otherwise
specified.

C. Downstream distance from the sphere in x and Nt

For linearly stratified fluids, the relationship between a commonly used non-dimensional time,
Nt ≡ N∗t∗, and downstream distance, x ≡ x∗/D∗, is given by

Nt = x (Fr/2)−1, (17)

where origins for x and t are located at the sphere center. Analysis of the wake in Nt is a rela-
tive distance behind the sphere in terms of the fraction of the Fr-associated characteristic buoyant
wavelength and portion of completed buoyant period.

Consequently, comparisons between the flow of a uniform density fluid and stratified fluid
cannot be properly expressed in terms of Nt since the wake of the uniform density fluid (i.e., N∗ ≡
0) cannot have an analytic description in Nt. Intuition suggests that description of the flow in the
near wake should asymptote with increasing Fr to the behavior of a uniform density fluid. Thus, x
is the preferable choice for descriptions of the wake because the simulations explicitly contain the
sphere, and physically relevant descriptions in the limit of Fr → ∞ can be made. Notwithstanding,
Nt remains useful in illustrating buoyant commonalities between the stratified unsteady wakes. Both
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x and Nt are used throughout remaining discussions, and care is taken to ensure that descriptions in
x and Nt correlate to the same physical location behind the sphere. For convenience, the equivalent
distance and time behind the sphere are commonly given as a set {x,Nt}.

D. Averaging in the near wake

Experimental studies of stratified wakes frequently use a digital particle image velocimetry
(DPIV) setup44,45 where a realization of the flowfield within a viewing window is spatially inte-
grated,

⟨q⟩xwc
(y, z, t) = 1

∆L

 xwc+
∆L
2

xwc− ∆L2
q (x⃗, t) dx, (18)

where q is any flow field quantity, xwc is the mid-window downstream position, and ∆L is the
streamwise width of the window.

A temporal average over the course of several vortex shedding cycles will eliminate variance of
collected wake statistics from the simulation data, i.e.,

q (x, y, z) = 1
∆T

 t1

t0

q (x⃗, t) dt, (19)

where ∆T is the representative time scale of averaging. The period used for computing q (x, y, z) is
longer than that which is involved in the assumption that a spatial and time average are equivalent.10

To highlight the differences between q (x, y, z) and ⟨q⟩xwc
(y, z, t), and the variance of

⟨q⟩xwc
(y, z, t), a computationally generated unsteady flow field is analyzed using a DPIV setup44,45

for a Re = 1000, Fr = 4 flow. Figure 6(a) serves as a physical reference to the planes referred to in
the DPIV arrangement, and Figure 7(a) serves as an illustrative reference to the DPIV setup and its
subsequent effect on statistical data when applied within the near wake.

The visualization/analysis window in Figure 7(a) is centered at {x,Nt} = {6,3} and z = 0, of
width ∆X = 3.5, and is coplanar with the y = 0 vertical center plane. The visualization plane is
integrated spatially to obtain an averaged stream-wise velocity profile,44

Uxwc (0, z, t) = ⟨u(x⃗, t)⟩xwc
=

1
∆X

 xwc+
∆X

2

xwc− ∆X2
u (x⃗, t) dx. (20)

This average velocity is then assumed to be the average stream-wise velocity everywhere within the
visualization window. The root mean square perturbation values are then calculated spatially along

FIG. 6. Sketches (not to scale). (a) Vertical and horizontal center planes and wake centerline. (b) Galilean transformation of
stream-wise velocity profiles in upper vertical plane and negative horizontal plane and wake length scales Lσv and Lσh.
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FIG. 7. Re= 1000, Fr= 4. (a) Shaded area is a DPIV window centered about xwc = 6. The sphere at (x, z)= (0,0) is moving
to the left. (−−) damping layer. (+) detected locations for |z | > 2 and 3.75 ≤ x ≤ 14.75 where w′(x,0, z, t) . 10−3≃ 0 over a
∆T = 40; sampled every 0.4 time units. (b) (− ·−) simulation comparison of ⟨w′⟩xwc

(0, z) to (N) Spedding44 at Re= 5000.

the stream-wise direction,44

⟨u′⟩xwc
(0, z, t) =



1
∆X

 xwc+
∆X

2

xwc− ∆X2

�
u (x,0, z, t) −Uxwc (0, z, t)

�2dx


1
2

, (21)

⟨v ′⟩xwc
(0, z, t) =



1
∆X

 xwc+
∆X

2

xwc− ∆X2
v(x,0, z, t)2dx



1
2

, (22)

⟨w ′⟩xwc
(0, z, t) =



1
∆X

 xwc+
∆X

2

xwc− ∆X2
w(x,0, z, t)2dx



1
2

, (23)

where xwc = 6 is the x location about which the example analysis window (shaded area of
Figure 7(a)) is centered in the stream-wise direction.

Comparisons of the low resolution simulation are made against experimentally collected DPIV
field data taken in the near wake at Re = 5000, Fr = 4 (Fig. 8 of Spedding;44 reproduced in
Figure 7(b)). In the stratified near wake, this is possibly the only in-plane stream-wise and vertical
perturbation velocity data set available. Although the current simulation is performed at Re = 1000,
the uniform density case is a highly unsteady, near-transition flow, and comparisons between
the statistically collected data sets remain of interest as wake behavior between Re = 1000 and
Re = 5000 is expected to be similar.

At Fr = 4, the computationally obtained quantities in Eqs. (21)-(23) are spatially averaged as
indicated and an additional average in time is applied to a series of windows of the same dimension
centered about {x,Nt} = {6,3} such that at y = 0,

⟨q⟩xwc
(0, z) = 1

∆T

 t1

t0

⟨q⟩xwc
(0, z, t)dt. (24)

The interval of the time average is ∆T = 40 and is intended to remove any variance in the collected
statistics at that location. If time and spatial averaging are equivalent, or roughly equivalent, then
there should be no significant penalty in comparison from the double averaging technique.

Equation (23) assumes that W (xwc,0, z, t) = 0, and all fluctuating quantities in the vertical
direction contribute to ⟨w ′⟩xwc

(0, z, t) only. The computational results for ⟨w ′⟩xwc
(0, z) are com-

pared against the Re = 5000, Fr = 4 experimental data in Figure 7(b). In the double-averaging
technique, regions of non-negligible vertical perturbation velocities appear in Figure 7(b), and
⟨w ′⟩xwc

(0, z) extends out of the wake region for |z | ≥ 2, where the value of |z | = 2 is the current
choice in demarcating the wake and free stream regions. In that same figure, the computed profile
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FIG. 8. Re= 1000, Fr= 4. (a) w′(x⃗, t = 20) in vertical plane for (−•−) x = 4.45, (−■−) x = 5.25, (−− w/N) x = 6.05, (−−
w/△) x = 6.85, (−− w/�) x = 7.65. (b) ⟨w′⟩xwc

(0, z, t) in vertical plane at (◦) t = 0, (−) t = 20, and (− ·− w/�) t = 40 at
xwc = 6; N Spedding44 at Re= 5000.

of ⟨w ′⟩xwc
(0, z) is also wider in z than the experimentally collected ⟨w ′⟩xwc

(0, z, t). This collective
difference is referred to as the “tails” of the perturbation quantity data. They could suggest evi-
dence of internal waves being generated outward from the unsteady wake motion, wave reflections
from the finite numerical boundary, or some combination thereof. However, the origin of both the
non-negligible regions of ⟨w ′⟩xwc

(0, z) in Figure 7(b) for |z | ≥ 2 and the width of the ⟨w ′⟩xwc
(0, z)

curve for |z | < 2 is results of the averaging techniques being applied in the near wake.
If W (xwc,0, z, t) ≡ 0, the z location where w ′(x,0, z, t) ≃ 0 (locations of lee wave crests and

troughs as per linear theory46) will certainly change in x. This behavior is qualitatively shown in
Figure 7(a), and the lines of constant phase for lee waves are curved but not necessarily in accor-
dance with linear theory.39 Using a temporally sampled subset of the data used to create Figure 7(a),
the results in Figure 8(a) for values of w ′(x,0, z, t) show that there are indeed x locations where
w ′(x,0, z, t) ≃ 0 at a specific z location, occurring within Figure 8(a) at (z, x) = (±5.6,4.45) and
(z, x) = (±3.2,5.25). In Figure 7(a), there are subsequent downstream locations between the lee
wave crests and troughs in x where w ′(x,0, z, t) � 0 anywhere in the far field between 6.05 ≤ x ≤
7.65, denoted by the double dashed lines. These trends correlate with Figure 7(a) where between
8 . x . 12 no w ′(x,0, z, t) ≃ 0 is detected.

Because the width of the wake profile for ⟨w ′⟩xwc
(0, z) is also wider than the experimental

results presented in Figure 7(b), the variation of the width of ⟨w ′⟩xwc
(0, z, t) in time is also ad-

dressed. Three spatially averaged windows for ⟨w ′⟩xwc
(0, z, t) at arbitrary times t = {0,20,40} are

compared against the experimental data in Figure 8(b). From the three discrete-time profiles, it is
apparent that the ⟨w ′⟩xwc

(0, z, t) profile significantly varies in time, and at some times (e.g., t = 20),
the computational results produce a profile width for ⟨w ′⟩xwc

(0, z, t) comparable to the experimental
results. The fluctuations in the width of the profile for ⟨w ′⟩xwc

(0, z, t) are related to the overall
unsteadiness of the near wake structure itself.

If the DPIV window is spatially integrated and W (xwc,0, z, t) = 0, the majority of x locations
contribute some non-zero quantity to ⟨w ′⟩xwc

(0, z, t) in the free-stream region, thereby creating the
tails’ non-zero asymptote with increasing |z | as seen in Figure 7(b). The free-stream values for
⟨w ′⟩xwc

(0, z, t) will be dependent on the width and the location of the DPIV averaging window
and the time of the spatial integration. A similar argument can be made for profiles of v ′ in the
NEQ regime (e.g., Fig. 9 of Spedding44 at Nt = 9). When the assumption V (x⃗, t) = W (x⃗, t) = 0 is
removed, which is the case for all data presented after this section, the asymptotic free-stream
values of v ′(x⃗, t) and w ′(x⃗, t) will approach zero by the onset of the damping layer.

The computational results are presented using only temporal averaging. An inferred benefit of
the analysis of the free stream perturbation quantities is that when w(x⃗, t) is only averaged in time
then there will be an expected free stream z location where W (x⃗) ≃ 0 for downstream locations of x
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that coincide with the crest or trough of a lee wave, and this feature can be utilized (i.e., Figure 2(b),
Figure 5, Sec. IV F) when identifying the crests or troughs of lee waves at the edge of the unsteady
wake.

The flow field is described using a Reynolds decomposition

q (x⃗, t) = Q (x⃗) + q′ (x⃗, t) , (25)

where q = (u, v,w, ρ′) represents the full-field of the primitive variables, Q = (U,V,W, ρ′) is their
time averaged value, and q′ = (u′, v ′, w ′, ρ′) are the perturbation quantities. Note that ρ′(x⃗, t) of
Eqs. (3) and (5) is now comprised of an average and perturbation component.

The root mean square of a perturbation component is then defined

q′ (x⃗) =


1
∆T

 t1

to

[q (x⃗, t) −Q (x⃗)]2dt
1/2

, (26)

where ∆T = 200 for the low resolution Re = 1000 cases. to begins from a statistically steady state
based on the time history of the stream-wise drag coefficient, and t1 = t0 + ∆T . For brevity, the
root mean square perturbation components calculated by Eq. (26) are denoted by the prime only.
Although the simulations are performed by considering the inertial frame as attached to the sphere,
the flow field is presented in the laboratory reference frame. This is accomplished by Galilean
transformation in the streamwise direction because the sphere travels in a steady, horizontal motion.
A sketch of the transformation is in Figure 6(b).

E. Numerical resolution at Re = 1000, Fr = 4

In Sec. IV A, it is shown that the high resolution and standard resolution simulations exhibit
similar characteristics at Re = 1000 and Fr = ∞. That case represents the upper limit of the strati-
fied regime of interest. Above Fr = 4, the near wake behavior maintains its highly unsteady struc-
ture, and a Fr = 4 represents the lowest limit of this flow regime of interest. Understanding the
effects of the difference in numerical resolution on the range Fr = [4,∞] and how the statistical
trends are affected by this difference are addressed in this section.

In these stratified flow simulations, it is challenging to quantitatively separate the internal
waves at the edge of the wake from the wake structure itself using the λ2-criterion as vorticity is
generated by both internal waves and vortical wake structure. Regardless, the isosurfaces of the
λ2-criterion47 in Figure 9(a) in the low resolution simulations are able to capture the largest scale
structures present in the stratified near wake. In qualitative comparison with Figure 9(a), the higher
resolution simulation in Figure 9(b) captures more details of the instantaneous near wake structure.

FIG. 9. Re= 1000, Fr= 4. Instantaneous isosurface of λ2-criterion, defined by λ2=−0.001. (a) Low resolution, (b) high
resolution. The grey region is the z = 0 plane.
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FIG. 10. Re= 1000, Fr= 4. Perturbation quantity comparison (a) on centerline, (b) at z = Lσv. (−) standard resolution, (−−)
high resolution.

Comparison of the resultant centerline perturbation quantities between the low and high resolu-
tion simulations is shown in Figure 10(a), and the perturbation quantities at the vertical edge of the
wake (defined by Lσv) are presented in Figure 10(b). The perturbation quantities are consistently
larger in the high resolution simulation when compared against the low resolution simulation. The
perturbations in u′ are larger in the high resolution simulation, but there is also an increased velocity
defect in Uo seen in Figure 11 over the low resolution values. The magnitudes for quantities v ′, w ′,
and ρ′ also trend similarly in the near wake. It is of note that the peak magnitude of w ′o at w ′ at
Lσv for x = 6 in the high resolution simulations is similar to the experimental values obtained by
Spedding44 in Figure 7(b) at their respective locations. Significant departures in qualitative behavior
between different resolution simulations occur around or after the near wake value of Nt ≃ 2 − 3,
where the grid resolution for the standard simulation starts to coarsen away from the near wake
region.

Later sections will also focus on a data collapse description of the near wake as a function
of Fr and Lσv. As such, a comparison between the length scales calculated between the high
resolution simulation and standard resolution simulation is provided in Figure 12. Critically, the
vertical length scales are nearly identical between the high and standard resolution case until a

FIG. 11. Re= 1000, Fr= 4. Centerline velocity defect. (−) standard resolution, (−−) high resolution.
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FIG. 12. Re= 1000, Fr= 4. Computed half-widths of the near wake at (−) low resolution and (−−) high resolution. No
symbol is vertical length scale, (N) is horizontal length scale.

downstream position of x ≃ 8 or Nt ≃ 2 − 3. This range fully encompasses the region considered to
be the near wake of the sphere. Thus, the low resolution simulations are expected to have sufficient
resolution to capture the relevant near wake physics for a range of stratified fluids between Fr = 4
and Fr = ∞ based on the parity of calculated vertical length scales and the agreement of quantitative
and qualitative behavior both at the wake centerline and its edges. The low resolution simulations
are used in the remainder of the discussion of the near wake behavior.

F. Length scales of the near wake

The horizontal and vertical half-widths of the wake are the definitional choice of wake length
scales. The average stream-wise velocity component along the centerline U(x,0,0) = Uo(x) = Uo,
called the defect velocity, is used to define these length scales. The edges of the wake are defined by
locations where U(x⃗) = 0.15 Uo as sketched in Figure 6(b). The horizontal half-width of the wake
is denoted by Lσh ≡ L∗

σh
/D∗, and the vertical half-height is denoted as Lσv ≡ L∗σv/D∗. Physical

locations where |y | < Lσh and |z | < Lσv are referred to as inside the wake region, and outside of
these bounds is referred to as the free stream, which may or may not contain lee waves of significant
amplitude.

When Fr < 4, the simulations indicate that the stratification significantly suppresses unsteady
motion, consistent with experimental observations39 at Re = 2000. At Fr = 2, the flow is essen-
tially steady, and when Fr = 1, the flow is certainly steady, with stratification having completely
suppressed the statistical fluctuations in the flow. Significant lee waves are also present in the free
stream for Fr < 4 as can be inferred from results shown in Figures 5(d) and 5(e).

The lee waves have a pronounced effect on the length scale behavior of the near wake for
the Fr = {1,2} cases as indicated by Figure 13. Initial values of Lσv are significantly reduced
for Fr = {1,2} when compared with the Fr = 4 case. After an initial reduction of Lσv for both
Fr = {1,2}, the vertical length scale continues to increase in some average sense with x. The verti-
cal flow over the sphere in the Fr = 1 case is likely suppressed due to energy restrictions, but Lσv

between the two cases scales similarly as downstream location increases in x. The oscillations in
Lσh for the Fr = 1 case (Figure 13) do not match the Fr = 2 case when x & 1.5 even though the
widths begin at similar values. This is attributed to the significance of the lee wave influence, and
inspection of Figure 13 shows local maxima and minima for Fr = 1 length scales that are out of
phase directly behind the sphere.
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FIG. 13. Re= 1000. Half-widths of the near wake. Open symbols correlate to Lσh, closed symbols to Lσv. (◦, •) Fr= 1, (�,
■) Fr= 2, (N) Fr= 4 for comparison at x = 0.6, (−) Fr=∞.

The oscillatory behavior of Lσv is correlated with the influence of the average perturbation
density, ρ′. From Eq. (1), 4 ρ′/Fr2 is representative of the average vertical body force on the fluid.
The correlation between 4 ρ′/Fr2 and Lσv is shown through Figures 14(a) and 14(b), with data
collected at positive z = Lσv, the vertical edge of the wake, where minima and maxima are in phase
with the minima and maxima of Lσv in the near wake. As 4 ρ′/Fr2 decreases at the edge of the wake
with increasing Fr (e.g., Figures 14(c) and 14(d)), the influence of the average body forcing on the
vertical length scales in the near wake decreases.

The lower-Fr limit to obtain a fully three dimensional near wake region39 occurs at Fr ≃ 4, and
this claim is supported by the near wake behavior of Lσv in Figure 15(a) and the unsteady wake
contours of w(x⃗, t) in Figure 5(f). By inspection of Figure 14(c) for 2 . x . 7, the average density is
in phase with Lσv, but the body force is both reduced in magnitude and appears to slip out of phase
with Lσv, as downstream distance increases.

In Figure 15(a), each case of Fr ≥ 4, Lσv grows in x after x = 2.25 until {x,Nt} ≃ {3 Fr/2,3}.
For Fr & 4, the location of x ≃ 2.25 is the common location where it is possible to parameterize
the wake widths. The near wake region begins at this location, and the region where x . 2.25 is
referred to as the recirculation region, which is also unsteady. The length of the region is denoted
by Lrr and is the location at which Uo(Lrr) ≃ 1. The length of this region is only weakly dependent
on Fr as Lrr ≃ 2.25 for Fr = ∞ and Lrr ≃ 2.1 for Fr = 4. No attempt to parameterize this region
is made because downstream characteristics in length scale behavior and flow field statistics are not
compatible with the scaling form of parameterizations (Sec. IV G) available for x & 2.25.

At Fr = ∞, a fitted parametrizations of Lσv and Lσh in the near wake between 2.25 ≤ x ≤ 15 is

Lσv∞ = Lσh∞ = 0.37 x0.55, 2.25 ≤ x ≤ 15, (27)

where the subscript ∞ denotes the case Fr = ∞. Parameterizations of Lσv and Lσh in stratified
near wakes should asymptote to Eq. (27) as Fr → ∞. After the recirculation region, Lσv of each
lower-Fr case grows at a reduced rate from the Fr = ∞ case. Based on the decreased growth rate
of Lσv in Figure 15(a), for Fr ≥ 4, accounting for stratification will affect the exponent in Eq. (27),
where Lσv ∼ x0.55 f (Fr ) such that f (Fr) = 1 for Fr → ∞ and f (Fr) ≃ 0 when Fr = 4. Stratification
will affect the amplitude of Lσv at x ≃ 2.25 due to suppression of the flow over the sphere as Fr
decreases.

A numerically fitted parametrization for Lσv is given by

LσvFr = A(Fr) x
0.55

0.94+3.2/(Fr−4) , 2.25 . x .
3
2

Fr (28)
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FIG. 14. Re= 1000. Comparison of average body force located at z = Lσv, y = 0. (−−) 4 ρ′/Fr2 for each case and (−) is
the zero axis line of the ρ′ axis. Symbols indicate lines of Lσv. (a) Fr= 1, (b) Fr= 2, (c) Fr= 4, (d) Fr= 10.

valid for Fr ≥ 4, where the subscript Fr of Lσv indicates the Fr-specific case. It is worth noting that
the description of A(Fr) is sensitive to the function f (Fr) and is empirically found to be

A(Fr) = 0.11 sech [0.24 (Fr − 7.42)] + 0.37. (29)

Equation (28) displays an asymptotic behavior towards Eq. (27) as Fr → ∞. The lower limit
of Fr = 4 is chosen because if Fr . 4, Lσv does not scale similarly to the Fr ≥ 4 cases by compar-
ison between Figures 13 and 15(a). The change in growth of Lσv for {x,Nt} ≥ {3 Fr/2, 3} is the
beginning of the NEQ regime and is outside of the intended parametrization range. The agreement
between Eq. (28) and the simulation data is qualitatively shown in Figure 15(a).

Figure 15(b) suggests that growth rates of Lσh only weakly depend on Fr in the near wake.
Again, x ≃ 2.25 is a common starting point for significant growth in Lσh. When Fr ≥ 4, and using
Fr = 4 as the illustrative case, Lσh does show an initial growth and changes its growth rate around
{x,Nt} ≃ {3 Fr/2, 3}.

Opposite the effects of Fr on Lσv, Lσh is initially wider at x ≃ 2.25 with decreasing Fr. All
Lσh for Fr ≥ 4 begin at similar values directly behind the sphere as, even for strongly stratified
flows, horizontal motion around the sphere is not inhibited by potential energy requirements. After
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FIG. 15. Re= 1000. Half-widths of the near wake. (a) Vertical center plane at y = 0. (b) Horizontal center plane at z = 0
(every other Fr case omitted for clarity). (N) Fr= 4, (■) Fr= 5, (+) Fr= 6, (×) Fr= 8, (�) Fr= 10, (⋆) Fr= 16, (−) Fr=∞.
(−−) plotted through Nt= 3.5, Eq. (28) in (a), Eq. (30) in (b).

the recirculation region, at x ≃ 2.25, initial values of Lσh become dependent on Fr. As with Lσv,
Lσh should approach Eq. (27), in the Fr → ∞ limit of the uniform density case. If growth rate of
Lσh in the near wake is only weakly dependent on Fr, then Fr affects only the starting width of the
wake at x & 2.25, and a numerically fitted description is given of the form

LσhFr = B(Fr) x0.55, 2.25 . x .
3
2

Fr, (30)

where

B(Fr) = 0.46 exp (−0.31 Fr) + 0.37 (31)

when Fr ≥ 4 and {x,Nt} ≤ {3 Fr/2,3}. The parametrization for Lσh is plotted against the simula-
tion results in Figure 15(b). The parametrization generally describes values of LσhFr, and deviations
are related to the choice of the constant exponent in Eq. (30). Errors in estimation from the data
because of this choice are typically less than 10%.

G. The near wake centerline

The centerline defect velocity, Uo, in the near wake develops with downstream distance as
Uo ∼ x−c in a uniform density fluid wake. The exponent c is commonly constant, O(1), and is sensi-
tive to the range and behavior of the data downstream of the sphere. The exponent is sensitive to the
range and the methodology of the fit, where directly behind the recirculation region, Uo may behave
as Uo ∼ x−2, and farther downstream, self-similar development is expected as Uo ∼ x−2/3. In the
near wake, expectations of truly self-similar scaling should be abandoned because the wake is not
self-similar. Nevertheless, scaling descriptions are commonly used and remain useful in describing
the downstream behaviors of flow quantities.

At Fr = ∞, the simulation reproduces an expected decay in Uo, shown in Figure 16(a), and a
simple scaling description is used to parameterize the defect velocity of the uniform density fluid
wake,

Uo = 3.58 x−1.64, 2.25 ≤ x ≤ 15, (32)

where Eq. (32) is numerically fitted from the simulation data available from x ≃ 2.25 to x = 15.
In Figure 16(a), Fr = 4 is representative of stratification effects because Uo departs from the

uniform density case immediately downstream of x ≃ 2.25. Upstream of x ≃ 2.25, which is within
the recirculation region, Uo is indiscernible between the Fr cases. Between {x,Nt} ≃ {2.25,1.1}
and {x,Nt} ≃ {7,3.5}, departures of the stratified wakes from the uniform density case are not
severe compared to the departure further downstream. After {x,Nt} ≃ {7,3.5}, Uo increases very
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FIG. 16. Re= 1000. (a) Centerline defect velocity,Uo. (b) NormalizedUo/Lσv. (N) Fr= 4, (■) Fr= 5, (+) Fr= 6, (×) Fr= 8,
(�) Fr= 10, (⋆) Fr= 16, (−) Fr=∞. (−−) Eq. (32) in (a), (−−) Eq. (34) in (b).

slightly, and after {x,Nt} ≃ {10,5}, it returns to decay. Similar behavior has been reported48 for
Fr = {3,6,10} at Re = {3400,6900,11500}, respectively. At the constant Re = 1000, current results
only indicate downstream increase of Uo in the Fr = 4 case, and the severity of this departure from
the Fr = ∞ case lessens with increasing Fr as neither Fr = 5 nor Fr = 6 exhibits this increase for
the same time in Nt. Spedding et al.19 note that mean stream-wise velocities in the NEQ and far
wake regions can be greater than that of high Fr by nearly an order of magnitude, and it is clear by
maintaining a constant Re and changing Fr, as in Figure 16(a), that this is caused by stratification
effects in the near wake.

It is shown in Sec. IV F that stratification influences the growth of the vertical wake width in
the near wake. A stream-wise, mean local Froude number is defined as FrLσv = U∗o/(N∗L∗σv). Like
the internal Fr, FrLσv is representative of the mean energy available to a fluid particle on the wake
centerline as compared to the potential energy required to vertically displace that same particle to
the edge of the wake. If Uo is normalized by Lσv, then that ratio may be manipulated,

Uo

Lσv
=

U∗o
U∗s

D∗

L∗σv

=
U∗o

N∗ L∗σv

N∗D∗

U∗s
= 2

FrLσv

Fr
. (33)

By Figure 16(b), regardless of Fr, Uo/Lσv collapses completely onto the uniform density case
when {x,Nt} . {5,10/Fr}. Downstream of this point, the stratified cases begin to slightly diverge
from the uniform density case until {x,Nt} ≃ {Fr,2} whereafter Uo/Lσv severely departs from the
uniform density case.

The data collapse in Figure 16(b) indicates that in the stratified fluid, the local ratio of avail-
able mean kinetic to potential energy requirements directly scales with internal Froude number,
Fr. When 4 ≤ Fr ≤ ∞ and Nt . 2, this ratio is independent of the stratification level. Additional
interpretation of Uo/Lσv in the near wake is not immediately clear, although U∗o/L∗σv is proportional
to some wake vortical time scale, and Uo/Lσv is that time scale normalized by the inverse advective
time scale U∗s/D∗, utilized previously in studies of stratified wakes.44

Values of Uo/Lσv in cases of Fr = {4,5,6,8} significantly transition away from the uniform
density case limit at Nt ≃ 2 and appear to reach a new, similar rate of decay at corresponding
values x ≃ {8.4,9.0,9.9,12} or, equivalently, Nt ≃ {4.2,3.6,3.3,3}, indicating a Fr-dependence on
the length of this transition. The common departure at Nt = 2 of Uo/Lσv indicates that the mean
flow starts to transition into the NEQ regime earlier than Lσv alone might indicate (Sec. IV F).

A straightforward modification to Eq. (32) that can parametrize Uo in the near-wake for Fr ≥ 4
is found by using Uo/Lσv, applied downstream of the recirculation region. The general collapse of
the Fr ≥ 4 data in Figure 16(b) onto the Fr = ∞ data for Nt . 2 is used to generalize the curve fit for
any Fr ≥ 4. After Nt ≃ 2, a virtual origin description in lieu of Eq. (32) for the NEQ region would
require a shift in origin on a per-Fr basis. A modified parametrization, for the near wake, consistent
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FIG. 17. Re= 1000. Anisotropy of (−) u′o, (− ·−) v′o, (−−) w′o in the near wake. Unmarked lines are uniform density case.
The Fr= 4 case: (N) u′, (•) v′, (■) w′.

with Eq. (32) is

UoFr

LσvFr
= 9.68 x−2.19, 2.25 . x . Fr, (34)

where the upper limit in x is equivalent to Nt = 2, valid for Fr ≥ 4 and x ≤ 15, and the subscripts
Fr indicate the Froude number of the case. A larger domain could increase the accuracy of this
statement for the higher Fr cases, where there is notable departure from the description provided by
Eq. (34).

Descriptions of the perturbation components are presented in two ways. First, the unmanipu-
lated data are available for all perturbation components for direct comparison. Second, the collapsed
parametrized data are presented in terms of physical downstream distance x. In the cases of w ′o and
ρ′o, the data in Nt are used as a guide in an attempt to collapse the data of the near wake.

Centerline perturbation velocities for the uniform density case begin in a slightly anisotropic
state for the Re = 1000 flow. We read peak perturbation velocity values for u⃗′o = (u′o, v ′o, w ′o) =
(0.159,0.166,0.156) at x = (2.2,2.5,2.5) from Figure 17. While not beginning with the same en-
ergy distribution, each perturbation component in the uniform density case decreases at a similar
rate. This behavior is in contrast to the behavior of u′o, v ′o, and w ′o for the stratified Fr = 4 case.
Qualitatively, it is also clear that the stratified perturbation velocities in the near wake do not scale in
a similar fashion to each other whatsoever.

Parameterizations of velocity perturbations in uniform density case are

u′o = 0.32 x−0.92, 2.25 ≤ x ≤ 15, (35)

v ′o = 0.38 x−0.86, 2.25 ≤ x ≤ 15, (36)

w ′o = 0.38 x−0.94, 2.25 ≤ x ≤ 15. (37)

As evident in Figure 18(a), stratification immediately affects the magnitude of u′o in the re-
circulation region and subsequent values in the near wake, but it does not appear to generate a
pronounced effect on the decay rate of u′o. For Fr = 4, the magnitude of u′o at x = 2.2 is roughly
two-thirds that of the uniform density case. Only the Fr = 4 case hints at any significant departure
from the decay rate of u′o at {x,Nt} ≃ {7,3.5}.

The Osmidov length scale in the near wake is defined as

l∗o =
(
ϵ∗

N∗3

)1/2

= *
,

u′o∗
3

L∗σvN∗3
+
-

1/2

. (38)
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FIG. 18. Re= 1000. Centerline stream-wise perturbation velocity (a) unmodified, (b) normalized. (N) Fr= 4, (■) Fr= 5, (+)
Fr= 6, (×) Fr= 8, (�) Fr= 10, (⋆) Fr= 16, (−) Fr=∞. (−−) Eq. (35) in (a), Eq. (42) in (b).

A manipulation of Eq. (38) proceeds in the following fashion:

l∗o
L∗σv

=
lo

Lσv
= *
,

�
u′oU∗s

�3

(LσvD∗)3N∗3
+
-

1/2

=

(
u′o
Lσv

Fr
2

)3/2

, (39)

and after rearrangement of terms provides

u′o
Lσv
=

2
Fr

(
lo

Lσv

)2/3

. (40)

Equation (40) indicates that the non-dimensional quantity u′o/Lσv is representative of the
ratio of the buoyant overturn length scale to turbulent integral length scale.45 If Fr → ∞ and
lo/Lσv ∼ Fr3/2, Eq. (40) remains consistent in the unstratified limit. In a uniform density fluid,
u′o/Lσv = (u′o∗/Lσv

∗) (D∗/U∗) is representative of an eddy turnover time normalized by the advec-
tive time scale of the flow. If a local stream-wise Froude number is defined45 along the centerline
as Frl1 = u′o∗/(N∗Lσv

∗), then normalizing u′o by Lσv is also equivalent to normalizing the local
Froude number by the internal Froude number, u′o/Lσv = u′oD∗/(U∗sLσv) = 2Frl1/Fr , which is
also consistent in the Fr → ∞ limit, and the local perturbation kinetic energy available in the near
wake will scale with Fr.

Once the normalization u′o/Lσv is made, the near wake stream-wise perturbation velocities
collapse onto the data of the uniform density case, see Figure 18(b), confirming that the local
stream-wise kinetic energy scales with the potential energy requirements of particles passing over
the sphere. The kink in the decay rate of u′o/Lσv remains perceptible, yet not dramatic, as the flow
enters the NEQ region. Generally, the higher the Fr, the more closely this collapse appears to follow
the uniform density case for downstream values in x. There are some notable departures for the
Fr . 8 cases of this behavior further downstream, but this may be attributed to the entry of the wake
into the NEQ regime as well as edge-of-domain proximity of the damping layer.

At sufficiently high Re, if u′o (or v ′o or w ′o) in the uniform density case, and both Lσv∞ and
LσvFr are known (i.e., by shadowgraph), then the value of the stream-wise perturbation velocity in
the near wake can be predicted by

u′oFr = u′o∞
LσvFr

Lσv∞
, 2.25 . x .

3
2

Fr (41)

valid for Fr ≥ 4, where subscripts Fr and ∞ indicate the stratified and uniform density case values,
respectively. If these data are not available, then a consistent parametrization for u′o in the near
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FIG. 19. Re= 1000. Centerline horizontal perturbation velocity (a) unmodified, (b) normalized. (N) Fr= 4, (■) Fr= 5, (+)
Fr= 6, (×) Fr= 8, (�) Fr= 10, (⋆) Fr= 16, (−) Fr=∞.

wake can be obtained by a fit of the uniform density case for u′o/Lσv,

u′oFr

LσvFr
=

u′o∞
Lσv∞

= 0.87 x−1.49, 2.25 . x .
3
2

Fr, (42)

and is valid for Fr ≥ 4. Because of the u′o/Lσv collapse in Figure 18(b) and Eq. (41), the subscripts
of∞ and Fr are interchangeable, and Eq. (28) may be used in place of Lσv for a full parametrization
in terms of x or Nt only.

Values of v ′o in Figure 19(a) indicate that stratification can affect the decay rate of centerline
perturbation values in the near wake within short distances downstream of the sphere. In the cases
Fr = {4,5}, there is a notable change in decay where v ′o begins to level off further downstream
from the sphere. This occurs at x ≃ {6,7.5} or equivalently Nt ≃ 3 for both Fr = 4 and Fr = 5.
Following the procedure applied to u′o, v ′o is rescaled by Lσv in Figure 19(b) such that at x ≃ 2.25,
the values of the uniform density case and stratified cases for v ′o/Lσv reach a closer agreement.
Similar to u′o, this is equivalent to normalizing a lateral, local Froude number Frl2 = v ′o

∗/(N∗L∗σv)
by the internal Froude number.

This rescaling, seen in Figure 19(b), is insufficient to collapse the data in the near wake region
for v ′o. An attempt at correction to the collapse is made by the use of a fitted asymptotic function
such that parameterizations of v ′o, for x & 2.25, scale with the uniform density case. The fitted form
of the asymptotic function, f v (Fr), is

f v(Fr) = 0.26 tanh
(
0.39

Fr
2

)
(43)

and asymptotes to 1 as Fr → ∞. It is reiterated that the parametrizations are intended to be applied
for Fr ≥ 4, which is also inherent to the parametrization through Eq. (42). The behavior of Eq. (43)
as Fr → 0 is not necessarily representative of the wake behavior. The parametrization that is consis-
tent with Eq. (36) becomes

v ′oFr

LσvFr
= 3.95 f v(Fr) x−1.43, 2.25 . x .

3
2

Fr (44)

and Fr has replaced the ∞ subscript in Eq. (44) through the same reasoning applied to u′o. This
parametrization is shown in Figure 20 where the near wake values and Eq. (44) are in perfect
agreement.

Out of all perturbation velocity values along the centerline, w ′o is the most dramatically
affected by stratification. Figure 21(a) indicates significant, oscillatory behavior in w ′o within short
downstream distances from the sphere, even at a moderate values of Fr, such as Fr = 8. Fur-
thermore, the curvature of the initial decay for lower Fr is inflected from that of the u′o or v ′o
quantities. It appears from Figure 21(a) that w ′o will always depart from the uniform density case
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FIG. 20. Re= 1000. Collapse of v′o/Lσv by Eq. (43). (N) Fr= 4, (■) Fr= 5, (+) Fr= 6, (×) Fr= 8, (�) Fr= 10, (⋆) Fr= 16,
(−) Fr=∞, (−−) Eq. (44).

FIG. 21. Re= 1000; (N) Fr= 4, (■) Fr= 5, (+) Fr= 6, (×) Fr= 8, (�) Fr= 10, (⋆) Fr= 16, (−) Fr=∞. (a) Highly oscillatory
nature of w′o, (−−) Eq. (37), (− ·−) Eq. (45). (b) Collapse of w′o in Nt, (− ·−) ∼Nt−0.94, (−−) ∼ fw Nt−0.94. (c) Reduced
oscillations in perturbation velocity. (d) Parametrized vertical perturbation velocity, (−−) Eq. (48).
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FIG. 22. Re= 1000. Ratio of centerline density perturbation ρ′o to vertical velocity perturbation w′o.

for low-to-moderate Fr values at some x and Fr pairing. The first visible valley of w ′o occurs at
locations x ≃ {6,7.5,9,12} for Fr = {2,2.5,3,4}, respectively, or at Nt ≃ 3 for all these Fr cases.

An estimate of Fr value where this oscillatory behavior could be considered negligible is
possible. The valleys are described by

w ′o |Nt=3 = 0.033 x−0.54 (45)

for Fr ≥ 4, where w ′o |Nt=3 indicates the recorded value of w ′o in the first valley. The Fr = 10 case
is not included in the parametrization due to the Nt = 3 condition being coincident with the onset
of the damping layer. The intersection of Eqs. (37) and (45) would occur at x ≃ 450. Based on the
visible trend, the case at which stratification becomes negligible in the near wake would also occur
within a negligible valley at Nt ≃ 3. This negligible reduction correlates with a Fr ≃ 150. Naturally,
this prediction is sensitive to the accuracy of the description in both Eqs. (37) and (45). With a
larger domain, it may be possible to obtain a better estimate, but perhaps, it is reasonable to suggest
that when Fr ∼ O(100), the differences between a stratified flow and a uniform density flow are
negligible.

The valleys of w ′o at Nt = 3 are located at the same location of the local maximum of the
collapsed ρ′o/w

′
o at Nt = 3 in Figure 22. Potential energy in a linearly stratified fluid is associated

with ρ′o because ρ′o is representative of the vertical displacement of fluid particles away from their
equilibrium position. The vertical turbulent kinetic energy is associated with w ′o. Thus, Figure 22
can be seen as representative of the centerline ratio of turbulent potential energy to vertical turbulent
kinetic energy. The valleys in w ′o of Figure 21(a) are representing the process of transferring verti-
cal turbulent kinetic energy into turbulent potential energy. As the values of w ′o increase out of the
valleys, some of the turbulent potential energy is being converted back into vertical turbulent kinetic
energy and vice versa for the descent of w ′o into a valley.

Both u′o and v ′o behave as the uniform density case when Fr → ∞, and Eqs. (42) and (44)
reflect this condition. Any parametrization of w ′o should asymptote in a similar fashion. Oscilla-
tions are not likely removed by normalizing w ′o by Lσv alone because, as seen in Figure 15(a),
there are no notable oscillations of Lσv for Fr ≥ 4 that would account for such large amplitude
oscillations in w ′o. Oscillations could be smoothed if the quantity w ′o is normalized by the “cor-
rect” choice of oscillatory function. Because of the form chosen to describe w ′o in Eq. (37), a
parametrized equation is sought in the form

w ′o

(
Fr
2

)0.94

= fw (Fr,Nt) (Nt)−0.94, (46)
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FIG. 23. Re= 1000. Centerline density perturbation. (N) Fr= 4, (■) Fr= 5, (+) Fr= 6, (×) Fr= 8, (�) Fr= 10, (⋆) Fr= 16.

where fw(Fr,Nt) is some oscillatory function dependent on Fr and Nt that compliments the decay
rate in time and should asymptote to unity when Fr → ∞. The final form of Eq. (46) is expected to
translate consistently into x, and because fw asymptotes to unity as Fr → ∞, w ′o must be multiplied
by (Fr/2)−0.94, as done in Figure 21(b). Like f v, there is no particular restriction on fw as Fr → 0
because Fr = 4 is intended to be the limiting case.

When viewed in Nt through Figure 21(b), w ′o(Fr/2)0.94 is collapsed and the decay appears
independent of Fr for 4.5/Fr . Nt ≃ 3, at which point there is growth in Nt until Nt & 4 when there
is a return to decay. The proposed form for fw is then

fw(Fr,Nt) = 0.15

2 + sin

(
1.16

π

2
(Nt)0.94

)
. (47)

A description of w ′o/Lσv in the Fr = ∞ case provides an estimate of the stratified behavior of
w ′o/( fwLσv) by Figure 21(c). A parametrization that describes w ′o/Lσv at Fr = ∞ is then

w ′oFr

LσvFr
=

w ′o∞
Lσv∞

= 2.9 fw(Fr, x) x−1.49, 2.25 ≤ x ≤ 3
2

Fr (48)

which is a parametrization of the vertical velocity coefficient and Eq. (28) may be used for a param-
etrization of w ′o purely in x. This parametrization is shown in Figure 21(d) where Eq. (48) tends to
over or under predict the Fr cases controlled by the generated collapse seen in Figure 21(c).

Centerline values of ρ′o for the near wake are presented in Figure 23, where views of ρ′o
show a relative independence from Fr for x . 2.25, which is within the recirculation region. The
development of ρ′o is physically described by a quick growth within and behind the recirculation
region, followed by an oscillatory decay. This is related to the transfer of energy as previously
described through Figure 22. When viewed in x, there is no obvious simple correlation between the
value of the magnitudes and location of the peaks between the various Fr cases. Analysis of ρ′o in
Nt, as in Figure 23(b), may aid in the parametrization of ρ′o because it appears that Nt ≃ 5 may be
the time at which ρ′o is at a local minimum for all cases of Fr ≥ 4.

Unfortunately, domain limits prohibit utilizing the trends of the higher Fr cases to generate
an oscillatory non-linear parametrization of ρ′o in Nt alone, as attempted for w ′o. Results for the
Fr = 4 case in the near wake lead to use of an empirical nonlinear parametrization in Nt of the form

ρ′o = 0.116
�
1 + 2.4 sin2(0.32Nt)� (Nt)1.26 exp(−0.64 (Nt)), 0.3 ≤ Nt . 4 (49)

which is included in Figure 24 against the simulation result of ρ′o for Fr = 4. The result of this
parametrization is quite representative of the behavior of ρ′o in the near wake and the form of
Eq. (49) is chosen based on the behaviors of ρ′o across the various cases in Fr in Figure 23(b).
The severity of the oscillations appears to decrease based on the Fr = {4,5,6} cases at Nt ≃ 5
in Figure 23(b), although the Nt = 5 condition for the Fr = 6 case is located at the onset of the
damping layer.
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FIG. 24. Re= 1000. Comparison of simulation result to parametrization of ρ′o. (N) Fr= 4, (■) Fr= 5, (⋆) Fr= 16, (−−)
Eq. (49), (− ·−) Eq. (50).

The tendency towards a decrease in severity in the oscillations of ρ′o suggests that, in the
near wake, the sinusoidal term of Eq. (49) may be removed for a higher Fr fluid. For Fr ≥ 5, the
description in x can be empirically fitted as

ρ′o = 0.056 tanh
(

Fr
6

)
x17.5Fr−1

exp
�
−15Fr−2� , 2.25 ≤ x .

3
2

Fr (50)

and this is also shown, translated into Nt, in Figure 24 for the Fr = 5 and Fr = 16 cases. For Fr ≥ 5,
Eq. (50) appears as a good, simple alternative to the form of Eq. (49) for the higher Fr cases,
although for the Fr → ∞ case, Eq. (50) results in a negligible value. This is not of concern as the
buoyant body force in Eq. (1) is identically zero as Fr → ∞.

H. The near wake in the vertical and horizontal centerplane

The near wake of the sphere at Re = 1000 for moderate to high Fr is fully three-dimensional
and anisotropic. A description of the near wake in the vertical and horizontal planes is useful in
completing descriptions of the near wake. Because the gravity vector is implicitly present as −g k̂ in
Eq. (1), and the sphere is an axially symmetric body, there are two planes about which the statistical
descriptions are expected to be symmetric which are the planes shown in Figure 6(a).

The vertical centerplane is a plane of symmetry because gravity does not contain a horizontal
bias in Eq. (1), and the horizontal centerplane is a plane of symmetry because particles should flow
equally over and under the sphere because, in a linearly stratified fluid, there is no vertical bias in the
buoyant body forces about the horizontal centerplane. Unless otherwise stated, all references to the
vertical plane and horizontal plane refer to the respective centerplanes of symmetry.

At Re = 1000, the uniform density fluid flow around the sphere and the wake is assumed
axisymmetric such that variance in the statistical description of the flow field is also invariant to
the rotation of the y or z axes about the wake centerline. Any directional bias in the wake caused
by choice of Re in the uniform density fluid would likely manifest itself in asymmetric vertical and
horizontal velocity field distributions between the vertical and horizontal planes about the center-
line. The same vertical and horizontal planes used to describe the stratified fluids in Figure 6(a) are
also used to describe the near wake for the uniform density fluid.

The general form used to parametrize the wake in the vertical plane is of the form

q(x, z)
qo(x)

�����Fr
= exp


− (z/Lσv − Bz)2

C2
z

+
B2
z

C2
z


+ exp


− (z/Lσv + Bz)2

C2
z

+
B2
z

C2
z


(51)
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and, likewise, a description in the horizontal plane is of the form

q(x, y)
qo(x)

�����Fr
= exp


−
�
y/Lσh − By

�2

C2
y

+
B2
y

C2
y


+ exp


−
�
y/Lσh + By

�2

C2
y

+
B2
y

C2
y


, (52)

where q(x, z) = q(x, y = 0, z), or q(x, y) = q(x, y, z = 0), is a flow field variable, qo represents its
centerline value at q(x, y = 0, z = 0), and the subscript Fr indicates the specific internal Froude
number. At Re = 1000, the coefficients Bz, Cz, By, and Cy are tunable for Eqs. (51) and (52) and are
dependent on Fr and the variable, q, of interest. By allowing separate descriptions in the vertical and
horizontal planes, it is possible to discuss asymmetry in the near wake that exists within the vertical
and horizontal planes.

In obtaining the coefficients for Eqs. (51) and (52), the physical coordinates of the horizontal
and vertical planes are also normalized by the appropriate half-width length scale, Lσv for z and
Lσh for y . The variance of the data for the uniform density and stratified near wake cases reason-
ably collapses for 2.25 ≤ x . Fr , where the upper limit is equivalent to Nt = 2. Because of the
damping layer, Fr = 10 is the highest stratified simulation that reaches Nt = 2 prior to the onset
of the damping layer at x = 15. The Fr = ∞ case is only limited by the onset of the damping
layer. After the data collapse, the data are numerically fitted to the descriptions of Eq. (51) or (52),
depending on the plane.

Following this procedure, Figure 25 contains the best-fit curves of the near wake for selected
values of parameter Fr. From the numerically fitted curves of the Fr = ∞ case, it appears that
assumptions of the axisymmetric wake are satisfied, with only minor asymmetry in the fitted pro-
files compared between Figures 25(e) and 25(f) for v ′/v ′o and Figures 25(g) and 25(h) for w ′/w ′o.
With higher Re, the variance between fitted profile widths in the uniform density case should
decrease. While these arguments are based on best-fit curves, Sec. IV I will also confirm that the
Fr = ∞ simulation data can be considered axially symmetric.

In comparison between the vertical and horizontal planes, the profiles are wake-width normal-
ized, and in the uniform density case, the length scales are identical (Eq. (27)) such that profile
widths directly compare to symmetry of the near wake width. This is not true for the stratified
cases, and although profiles may appear to have similar profile widths in the vertical and horizontal
planes, the quantities are physically wider in width than height (Figures 6(b) and 15). Additionally,
direct comparisons across Fr cases through Figure 25 are difficult because each flow field variable
is normalized by its centerline quantity, which by Sec. IV G is shown to vary with parameter Fr.
Quantitative commentary on the physical processes involved in creating the near wake behavior is
desirable. This would require an additional formal analysis using each individual terms of Eqs. (1)
and (3) and is reserved for future investigations. Qualitative commentary remains possible for some
of the defining features of the wake in the vertical and horizontal centerplanes, and the distribution
of these quantities at various Fr can be compared.

In the vertical centerplane of Figure 25(a), stratification does not appear to have any pro-
nounced effect on the mean stream-wise velocity distribution within the near wake. In the hori-
zontal centerplane, Figure 25(b), the mean stream-wise velocity tends towards a wider distribu-
tion throughout the wake as Fr decreases. At Fr = 4, the mean stream-wise velocity reaches its
maximum value off-centerline which is quite different from the higher Fr cases. In the vertical
plane, the stream-wise velocity perturbation quantities, u′/u′o, in Figure 25(c) are higher, relative
to their centerline values, than in the uniform density case, but the vertical plane velocity v ′/v ′o
distributions are unaffected by the presence of stratification (Figure 25(e)). The variance of the
stratified case values of w ′/w ′o in Figure 25(g) is slightly less than the uniform density case. It
appears that once the fluid is stratified, the distribution of w ′/w ′o between Fr cases in the near wake
appears generally unaffected, relative to the centerline values, by the severity of stratification. All
horizontal plane velocity perturbation quantities (Figures 25(d), 25(f), and 25(h)) contain maximum
normalized values at off-centerline locations, and in relation to the respective centerline values, the
value of this maximum increases as Fr decreases.

For the stratified cases, the centerline-normalized perturbation density profiles in Figures 25(i)
and 25(j) display an axial asymmetry between vertical and horizontal planes when comparing their
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FIG. 25. Re= 1000. Numerical fit of time-averaged data for 2.25 ≤ x ≤ Fr. Left column is on y = 0 plane. Right column is
on z = 0 plane. (△) Fr= 4, (+) Fr= 6, (♦) Fr= 10, (−) Fr=∞.

profile widths. In the vertical plane, as Fr increases, the variance of the profile in the vertical plane
increases and appears to create a “front” of ρ′/ρ′o. This is likely due to the ease of displacing a
particle in a lightly stratified fluid because as Fr increases, the ratio of available kinetic energy to
the energy required for a vertical fluid displacement also increases. The profile of ρ′/ρ′o maintains
its horizontal distribution within the near wake fairly regularly across the stratified cases, similar
to what is seen in w ′/w ′o in Figure 25(h). If ρ′ is generated primarily through vertical motions, it
is not surprising that the horizontal distribution of ρ′/ρ′o in the wake is relatively unaffected by
stratification.

The coefficients of Eqs. (51) and (52) that are obtained from numerically fitting the data to
each curve in Figure 25 are available in Tables II and III, respectively. For cases of Fr that are
not explicitly listed in Tables II and III, linear interpolation between entries may be used. If the
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TABLE II. Coefficients for vertical parametrizations in Figures 25(a) and 25(c)–25(f). n/a: not applicable.

U/Uo u′/u′o v′/v′o w′/w′o ρ′/ρ′o

Fr Bz Cz Bz Cz Bz Cz Bz Cz Bz Cz

4 0.00 0.69 0.54 0.50 0.00 1.18 0.00 1.02 0.00 0.95
6 0.00 0.72 0.62 0.54 0.00 1.16 0.00 1.07 0.00 1.24

10 0.00 0.74 0.58 0.52 0.00 1.08 0.00 1.12 0.00 1.43
∞ 0.00 0.73 0.62 0.60 0.00 0.98 0.00 1.31 n/a n/a

TABLE III. Coefficients for horizontal parametrizations in Figures 25(b), 25(d), 25(f), 25(h), and 25(j). n/a: not applicable.

U/Uo u′/u′o v′/v′o w′/w′o ρ′/ρ′o

Fr By Cy By Cy By Cy By Cy By Cy

4 0.41 0.44 0.63 0.53 0.55 0.47 0.47 0.56 0.00 0.58
6 0.37 0.46 0.63 0.56 0.57 0.62 0.46 0.65 0.00 0.64

10 0.32 0.55 0.61 0.54 0.54 0.76 0.44 0.76 0.00 0.79
∞ 0.29 0.59 0.61 0.58 0.47 0.91 0.01 1.08 n/a n/a

FIG. 26. Re= 1000, Fr=∞. Parametrizations versus simulation data. (−) w/ filled symbols are simulation data, (−−) w/ open
symbols are parametrizations. (•) x = 2.25, (■) x = 3, (N) x = 6, (�) x = 9.
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stratified case of interest requires Fr > 10, substituting a value of Fr ≃ 30 for the Fr = ∞ value
is recommended in determining high-Fr interpolated values. For future simulations interested in
initialization of the near wake without accounting for the sphere, fully three dimensional profiles
can be generated by interpolation between Eqs. (51) and (52).

I. Parametrizations vs. simulation data at Re = 1000

Two examples of the effectiveness of the Re = 1000 near wake parametrizations are given; one
for Fr = ∞ and the other for Fr = 6. In Figures 26 and 27, flow field quantities described by Eqs.
(34), (42), (44), and (48), as well as (50) in the Fr = 6 case, are compared against the time-averaged
quantities obtained directly from the simulations.

FIG. 27. Re= 1000, Fr= 6. Parametrizations versus simulation data. (−) w/ filled symbols are simulation data, (−−) w/ open
symbols are parametrizations. (•) {x,Nt} = {2.25,0.75}, (■) {x,Nt} = {3,1}, (N) {x,Nt} = {6,2}, (�) {x,Nt} = {9,3}.
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By Figures 26(a)-26(h), at Fr = ∞, the claim of axisymmetry (Sec. IV H) produced in the
simulation is reasonable. Despite some overprediction of v ′ at x ≃ 2.25, the parametrizations appear
to replicate the simulation flow field well. Figures 27(a)-27(j) also indicate that the parametriza-
tions of the stratified Fr = 6 case generally reproduce the vertical and horizontal flow fields when
{x,Nt} > {2.25,2.25(Fr/2)−1}. As expected, parametrizations of w ′/w ′o in Figures 27(g) and 27(j)
are not quite as accurate as those for other velocity components, and this is related to the rela-
tively coarse collapse of the centerline quantities seen in Figure 21(c). The parametrized density
perturbation quantities, ρ′, in Figures 26(i) and 26(j) reproduce the simulation results fairly well.

V. CONCLUSION

Simulations have been performed for a wide range of Fr values at both Re = 200 and Re =
1000. Improvements over the prior numerical investigation4 at Re = 200 of stratified fluid are
shown, and the internal lee wavelengths are found to be unaffected by the coherent vortex shedding
at low Fr. The internal lee waves are correlated with the average density field. At Re = 1000, the
simulations provide quantitative descriptions of the velocity and density field behind the sphere and
indicate that the internal wave field (Figure 5) for Fr ≥ 1 is not qualitatively affected by differences
between Re = 200 and Re = 1000. Internal waves were not detected by inflections of W (x⃗, t) any-
where in the free stream for Fr ≥ 5. A full description of the major field components is described for
4 ≤ Fr ≤ ∞ at a single Re = 1000 and appears to be the first full component field data set available
in the stratified near wake.

A detailed investigation explained the inherent differences between statistical results between
an experimental (i.e., DPIV) setup and a numerical investigation due to the different methodologies
in statistical collection techniques. The “tails” of the data at low Fr are artifacts of the averag-
ing techniques being applied within the unsteady near wake region. Space and time averages are
shown as not equivalent in the stratified near wake. Removing the steady lee wave field velocity
components (i.e., w(x⃗) in Figure 5) from the velocity field before the spatial integration would likely
remove the non-zero asymptote, and the temporal variation could be smoothed through an averaging
of windowed data subsets, as done for the simulation results in Figure 7(b). Some leeway should be
expected in directly comparing between experimentally and numerically collected field data in the
near wake of stratified fluids when different averaging techniques are employed.

The beginning of the unsteady near wake region starts at x = Lrr ≃ 2.25 when Fr ≥ 4. Based
on the analysis of Lσv, Lσh, mean stream wise velocity, and the perturbation quantities for Fr <

O(100), there is no region in the wake of the sphere where buoyancy will not affect the near wake at
Re = 1000. The near wake region in stratified fluids should be given a better descriptor than the “3D
near wake” lest the statistical behavior of the stratified near wake becomes erroneously synonymous
with the behavior of the near wake of a uniform density fluid.

Future simulations may attempt to account for the sphere within the computational domain in
their own particular way, and a self-contained point of comparison is now available for unsteady
stratified flows. Other numerical simulations can initialize physically close to the sphere without
having to actually account for the sphere explicitly within the computational domain by using the
given parametrizations. The benefits of doing this may result in achieving a higher correlation of
simulation-to-physical downstream distances from the sphere, spatially varying initial conditions
that account for the density field, and shorter initial simulation relaxation times.9

Making this claim, we recognize there are two competing requirements in “proper” initiali-
zation of simulations within the near wake that do not explicitly account for the sphere. The first
is maintaining a total coherence of the near wake, which would likely require full-interpolations
between near wake domains.6 This is not necessarily a trivial task between various grid geometries
especially with respect to the sensitivities to interpolation errors of highly accurate non-dissipative
numerical methods. Second, there is likely a practical requirement to quickly implement the initial
conditions into existing numerical schemes without major modification to the previously initializa-
tion procedures.
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The parametrizations offer a relative optimum by spatially varying along the wake centerline
while varying in the horizontal and vertical directions to account for downstream development of
the near wake. They can be easily implemented into a numerical simulation while leaving the exist-
ing initialization scheme relatively intact, and an implementation guide is provided in the Appendix
for convenient reference.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research, administered by R. Joslin, whose
support is gratefully acknowledged. One of the authors (J.A.D.) was partially supported by the
NSF Grant No. 1233160. The USC HPCC generously provided the parallel computing resources
required to generate the full-field data sets. The MATLAB Curve Fitting Toolbox (v3.2) software
was used to aid in the parametrization of the near wake.

APPENDIX: PROCEDURE TO INITIALIZE SPHERE-LESS SIMULATIONS

The procedure as well as relevant equations is reproduced here for convenience. At each node,
the following steps take place.

Step 1. Calculate Lσv and Lσh by

LσvFr = A(Fr) x
0.55

0.94+3.2/(Fr−4) , 2.25 . x .
3
2

Fr, (A1)

LσhFr = B(Fr) x0.55, 2.25 . x .
3
2

Fr, (A2)

A(Fr) = 0.11 sech [0.24 (Fr − 7.42)] + 0.37,

B(Fr) = 0.46 exp (−0.31 Fr) + 0.37.

Step 2. Use values of Lσv and Lσh from Step 1 to calculate Uo, u′o, v ′o, w ′o, and ρ′o by

UoFr

LσvFr
= 9.68 x−2.19, 2.25 . x . Fr, (A3)

u′oFr

LσvFr
= 0.87 x−1.49, 2.25 . x .

3
2

Fr, (A4)

v ′oFr

LσvFr
= 3.95 f v(Fr) x−1.43, 2.25 . x .

3
2

Fr, (A5)

w ′oFr

LσvFr
= 2.9 fw(Fr, x) x−1.49, 2.25 ≤ x ≤ 3

2
Fr, (A6)

ρ′oFr = 0.056 fρ′(Fr) x17.5Fr−1
, 2.25 ≤ x .

3
2

Fr, (A7)

f v(Fr) = 0.26 tanh
(
0.39

Fr
2

)
,

fw(Fr, x) = 0.15

2 + sin *

,
1.16

π

2

(
2 x
Fr

)0.94
+
-


,

fρ′(Fr) = tanh
(

Fr
6

)
exp

�
−15Fr−2� .

Step 3. Use centerline values from Step 2 to calculate U(x, y, z), u′(x, y, z), v ′(x, y, z),
w ′(x, y, z), and ρ′(x, y, z) by using (or interpolating) the coefficients from Tables II and III along
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with the form of Eqs. (51) and (52) to complete the spatially varying flow field,

q(x, z)
qo(x)

�����Fr
= exp


− (z/Lσv − Bz)2

C2
z

+
B2
z

C2
z


+ exp


− (z/Lσv + Bz)2

C2
z

+
B2
z

C2
z


,

q(x, y)
qo(x)

�����Fr
= exp


−
�
y/Lσh − By

�2

C2
y

+
B2
y

C2
y


+ exp


−
�
y/Lσh + By

�2

C2
y

+
B2
y

C2
y


.

Step 4. Complete any remaining standard simulation initialization procedures.
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