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Simulated upwelling fronts have been generated around the outer edge of a 
cylindrical tank filled with a two-layer fluid system and driven by a surface stress. 
Initially, an axisymmetric front was observed which subsequently became unstable 
to small baroclinic eddies. These eddies continued to grow until they reached an 
equilibrium size. Under some circumstances, cyclonic eddies pinched-off from the 
fully developed front and moved away from the mean position of the front into the 
fluid interior. Streak photographs of the fully developed flow field were digitized to 
generate a velocity field interpolated on to a regular grid. A direct two-dimensional 
Fourier transform was performed on the turbulent kinetic energy field deduced from 
such images and one-dimensional energy E( k )  spectra were extracted. Consistent k-i 
energy spectra were found a t  lower wavenumber, k, and approximately k-5.5 spectra 
at higher k. In any given experiment, the two spectral slopes meet close to a 
wavenumber k, = 2 x / h ,  (where A, is the mean diameter of a frontal eddy and k, is 
the associated wavenumber). According to classical theories, k ,  would be the input 
wavenumber, and the range of k with a k-0 spectrum would correspond to an inverse 
energy cascade range ; this yielded a Kolmogorov constant (C) that varied within the 
limits 2.8 < C < 3.8.  The approximately k-5.5 range, which is much steeper than that 
predicted by the original statistical theories, is nevertheless consistent with those 
found frequently in numerical experiments. 

The spectral slopes inferred from particle dispersion methods and from one- 
dimensional Fourier transforms of the longitudinal velocity correlations were 
compared with the results obtained above and in previous laboratory experiments. 
I n  general, the global energy spectra are consistent with an interpretation of the fluid 
dynamics as being that of two-dimensional turbulence. This in turn implies that 
known properties of such flows may be invoked to explain the appearance of a 
number of naturally occurring phenomena in coastal upwelling fronts. 

1. Introduction 
Satellite (IR) images have revealed meso-scale eddy structures a t  and in the 

vicinity of oceanic fronts (upwelling fronts), oceanic currents (the Gulf Stream), and 
more recently in the open ocean. As in the ocean, sharp-surfaced density fronts have 

t Also Earth & Space Sciences Division, Je t  Propulsion Laboratory, Pasadena, California, USA. 
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been produced and investigated in the laboratory (Griffiths & Linden 1981, 1982; 
Narimousa & Maxworthy 1987a). It has been found that soon after they form, the 
fronts become unstable to short baroclinic instabilities (waves), which grow in time 
until they reach a saturated size. Further development of these instabilities cause the 
fully developed frontal eddies to pinch off and produce isolated coherent vortices in 
the vicinity of the main front. This collection of frontal eddies combined gives rise 
to a velocity field that might be described in the language of two-dimensional or 
geostrophic turbulence. 

1.1 ,  Upwelling phenomena in the laboratory and in the ocean 
One important motivation that triggered this study were observations of thin, long 
offshore-extending, cold filaments in satellite (IR) images taken off the west coast of 
the USA during coastal upwelling episodes (Narimousa & Maxworthy 1989). Intense 
turbulent jets or rivers, which are believed to transport the cold upwelled water far 
offshore, have been recognized as a possible source for generating these filaments. 
Narimousa & Maxworthy (1985, 1986, 1987a, b )  observed in the laboratory that the 
turbulent jets were often associated with offshore eddies which could be generated in 
a variety of ways: ( a )  large-amplitude instability of standing waves generated by 
coastal perturbations ; ( b )  large-amplitude baroclinic instability of the front itself and 
(c)  production of eddies due to the presence of an offshore curl in the surface stress. 
In  all cases interaction between the offshore eddies produced the offshore jets, which 
then transported the upwelled water offshore. If the structure of such an eddy field 
obeys the laws of two-dimensional or geostrophic turbulence, then the intense 
turbulent rivers which seem to thread through such eddy fields are responsible for 
transport of material across it and must be characteristics of such fields. 

1.2. Statistical theories of two-dimensional turbulence 
The early studies of two-dimensional turbulence were concerned with the dynamics 
of atmospheric meso- and large-scale eddies, which were thought to have two- 
dimensional structure. In  the case of three-dimensional turbulence, Kolmogorov’s 
(1941) cascade hypothesis indicated an equilibrium inertial subrange in which kinetic 
energy cascaded from low to higher wavenumber ( k ) ,  and the energy spectra took the 
form E - k-a. In  the case of two-dimensional turbulence there is a second constant 
of motion, called the enstrophy, which was defined as half of the squared vorticity 
h2. This led Kraichnan (1967) and Leith (1968) to propose both a direct enstrophy 
and an inverse energy cascade inertial range for the case of forced two-dimensional 
turbulence. They found that E - k-a in the inertial range in which energy was 
transferred to lower k (an inverse cascade), and an E - k-3 inertial range in which 
enstrophy moved to higher k .  Batchelor (1969) found the kP3 range for the case of a 
freely decaying two-dimensional turbulence, consistent with Kraichnan’s and Leith’s 
energy spectrum for the enstrophy cascade range. Studies of three-dimensional, 
quasi-geostrophic turbulence (Charney 1971 ; Salmon 1978 ; Herring 1980; Heyer & 
Sadourny 1982) indicated the existence of two inertial ranges, k-3 and k-a, which was 
similar to the spectral characteristics of two-dimensional turbulence. (See also 
Lesieur 1987 for a comprehensive review.) 

1.3. Numerical simulations 
Besides the early computations of Lilly (1969, 1971, 1972), other numerical 
simulations of two-dimensional isotropic turbulence have frequently produced 
energy spectra considerably steeper than k-3 in the so-called enstrophy cascade range 
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(see Deem & Zabusky 1971 ; Fox & Orszag 1972; Herring et al. 1974; Fornberg 1977; 
Basdevant et al. 1981; Bennett & Haidvogel 1983; Haidvogcl & Keffer 1984; 
MeWilliams 1984). Herring et al. (1974), however, have recognized that very high 
resolution is required in numerical simulations in order to obtain a proper inertial 
range at higher wavenumbers. For grid resolutions respectively of 10242 and 20482 
Brachet, Meneguzzi & Sulem (1986) and Brachet et al. (1988), observed a k-4 slope for 
a short time, which then rapidly changed to a k-3 slope for a more mature flow. Based 
on the isovorticity contours, they identified the initial regime (kW4 slope) to be 
associated with isolated, discontinuous vorticity-gradient sheets in the turbulent 
field, as hypothesized by Saffman (1971), who predicted such a spectral slope. The 
second regime slope) corresponded to a maximum enstrophy dissipation period, 
which was the basis for the classical enstrophy cascade hypothesis resulting in the k-3 
slope. Brachet et al. (1988) showed that a t  later times the vorticity-gradient layers 
would dissipate and coherent vortices associated with isolated concentrations of 
vorticity which last for a long time would dominate. This later case was investigated 
by MeWilliams (1984) where such coherent vortex structure was associated with an 
energy spectrum closer to I C - ~ .  More recent numerical simulations (Santangelo, Benzi 
& Legras 1989) have shown, however, that the value of the final spectral slope is 
quite sensitive to the shape of the initial energy spectrum. 

1.4. Quantitative experiments 

Field measurements of large-scale atmospheric turbulence have tended to produce 
energy spectra scaling closer to  the kP3 law (e.g. Julian et al. 1970; Kao, Jenne & 
Sagendolf 1970; Morel & Larcheveque 1974; Dubois 1975), while others have 
reported k-9 inertia range (e.g. Brown & Robinson 1979; Gage 1979; Nastrom & Gage 
1983). Measurements of freely decaying two-dimensional turbulence in the laboratory 
produced an energy spectra with slopes close to - k-2.5 (Griffiths & Hopfinger 1984; 
Mory & Hopfinger 1986; Maxworthy, Caperan & Spedding 1987) at higher k ,  when 
the dispersion of particle pairs was used as the diagnostic tool. However, recent 
studies (summarized in Maxworthy 1989) have shown that such methods are in error 
when the actual spectral slope is larger than - 3. In this case Babiano, Basdevant & 
Sadourny (1985) and Bennett (1984) argue that the lower spectral slopes found by 
particle dispersion methods were due to non-locality of the particle dynamics while 
the arguments which lead to the classical relationship between particle diffusion and 
spectral slope is based on local dynamics. 

1.5. A laboratory model for forced, two-dimensional turbulence 

In the present study, the experiments of Narimousa & Maxworthy (1987~)  were 
employed to investigate the structure of mesoscale turbulence generated via 
baroclinic instabilities at upwelling fronts. Since the flow field was maintained by a 
constant supply of energy (see $3),  the turbulent flow was forced. As mentioned 
above, when Mory & Hopfinger (1986), Maxworthy et al. (1987) and Narimousa, 
Maxworthy & Spedding (1987) employed the same particle dispersion methods as 
Griffiths & Hopfinger (1984), the spectral slopes at higher k were almost identical. It 
appeared that, independent of the two-dimensional turbulence generation mech- 
anism in the laboratory, the measured spectral slope was always close to - k-2.5,  if 
particle dispersion methods were used. This result was found to be independent of the 
number of particles, and considerable changes in values of turbulent Reynolds 
number or rotation rate (Maxworthy et al. 1987; Narimousa et al. 1987). Here, 
alternative attempts to measure the energy spectra E ( k )  in the instantaneous flow 
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aP u* 
Experiment 52 (s-l) A52 (s-’) h, (cm) (g/cm3) (cm/s) A,(cm) 8, St ( s )  

a 2.27 0.185 2.60 0.018 0.36 17.0 1.7 0.5 
b 1.50 0.170 2.60 0.020 0.35 11.8 4.0 0.5 
C 1.20 0.143 2.35 0.020 0.33 8.5 7.5 0.5 
d 0.97 0.130 2.55 0.020 0.35 6.7 11.0 1.0 
e 0.85 0.114 2.35 0.020 0.32 4.4 20.0 1.0 

TABLE 1 .  Parameter values for the experiment of Narimousa & Maxworthy ( 1 9 8 7 ~ ) .  Here 51 is the 
tank rotation rate, AQ is the differential rotation of the top disc, h, is the depth of the top layer, 
Sp is the density difference between the two layers, u, is the applied friction velocity, A, is the final 
width of the upwelled water at the surface, 8, = (g’h,)/(u,fA,) (where g’ = g6p and f = 251 is the 
Coriolis parameter) is the fundamental controlling parameter of this system and 6t is the exposure 
time for the streak photograph. 

field are reported. Fourier transforms of either the two-point velocity correlations or 
directly on the two-dimensional kinetic energy fields provided two measures of E ( k )  
which could be compared with theoretical, numerical and experimental values 
previously reported in the literature and with each other. 

2. The experiment 
Since the present study employs the experiments of Narimousa & Maxworthy 

(1987 a ) ,  the reader is referred to that paper for a detailed discussion of the apparatus 
and the range of parameters used, and only a brief description will be given here. 

Two layers of salt water of slightly different densities were brought to solid-body 
rotation inside a cylindrical tank (90 cm in diameter and 20 cm in depth) having a 
conical bottom with a slope of about 0.27. The surface of the upper fluid was in 
contact with a circular, smooth disk, which, as it rotated, applied a stress to this 
surface producing an alongshore shear flow and an offshore Ekman flux in the top 
layer. As a result, an upwelling front was formed around the outer edge of the tank. 
The velocity vectors of the current and the upwelling frontal movement were 
observed by placing small neutrally buoyant particles in the front and recording 
their motion by steak photography. The direction of motion of these particles were 
found by firing an electronic flash at  the beginning of the time exposure. To reveal 
the structure of the eddies, the camera was set to rotate at a rate close to the drift 
velocity of the eddies. In this way a frozen velocity field was recorded and the 
resulting streaks represented the turbulent velocities. 

In the present study, five experiments with parameter values shown in table 1 
below are subject to spectral analysis. 

3. Evolution of forced mesoscale turbulence 
When the system was in solid-body rotation, the top disk was set to rotate 

anticyclonically, thus applying a stress to the top surface of the lighter fluid. The 
resulting Ekman flux caused the top layer to spin down and the interface to rise near 
the wall and to descend at the centre of the tank. The interface continued to rise near 
the wall until it intersected the top disk and a surface front was formed. This front 
then migrated away from the wall and allowed bottom water to appear at the surface 
around the outer edge of the tank. Eventually, the horizontal pressure gradient 
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caused by front deformation balanced the Coriolis force and the front became 
stationary at  a distance A, from the wall of the tank. Prior to this, at a distance 
A, < A, the upwelling front became unstable to small baroclinic instabilities. During 
migration of the front, the small disturbances continued to grow until they reached 
a saturated size A,. In  this way intense baroclinic eddies of the form of 
cyclone-anticyclone pairs dominated the sharp-surfaced density front. The distance 
where the waves first appeared at the front A, x 0.7A,8;0*S, and the mean diameter 
of the saturated waves A, w 0.15gh0/u, f were given by Narimousa & Maxworthy 
( 1 9 8 7 ~ ) .  

At large values of O,, the frontal eddies were large, and they tended to remain a t  
the front and consequently no pinch-off process was observed. Later, however, less 
intense eddies were formed in the upper layer adjacent to the more intense frontal 
eddies (figure 1 a). At moderate values of 8*, frontal eddies were of a smaller size and 
they were more intense, yet no eddy escaped from the front. Here again, less intense 
eddies were formed in the upper layer (figure 1 b) just as those seen in flows with large 

A t  low values of O,, frontal instabilities were much more intense and the upwelling 
front itself displayed strong unsteadiness. This eventually initiated large-amplitude 
wave instabilities which usually started at the wave troughs (i.e. the location of the 
cyclonic eddies) and then grew into the fluid interior. Later, cyclonic eddies were 
detached from such intrusions to form intense, isolated coherent cyclonic eddies in 
the top layer (figure 1 c )  away from the mean position of the front. Initially, the mean 
diameter of a pinched-off cyclone was about the same as that of frontal eddies A, but 
they subsequently continued to grow to a large value of about 3 4  times greater 
than A,, (i.e. an inverse energy cascade). Detachment of the cyclonic eddies occurred 
randomly at different locations of the front. Interactions of the pinched-off cyclones 
forced intense anticyclones to develop in between them. The pinched-off eddies, in 
particular, are of special interest in the present study because of their importance in 
the transport of the material across the turbulent flow field. To illustrate this 
Narimousa & Maxworthy ( 1 9 8 7 ~ )  released a passive marker within the upwelled 
water near the wall of the tank. The radial Ekman flow transported the marker 
toward the front where it interacted with the frontal eddies. At the pinched-off eddy, 
the marker was transported abruptly into the fluid interior by the induced flow. Such 
demonstrations in the laboratory led to the conclusion that the presence of eddies 
adjacent to an upwelled water front, for example, can be responsible for the 
transport of the upwelled water into the eddy field, in the form of long filaments. 

We proceed to investigate such flows by means of statistical tools to measure their 
energy spectra. Such measurements should provide us with the information to show 
whether or not our model has at  least some of the characteristics of two-dimensional 
turbulence as determined from theoretical and numerical studies. 

8,. 

4. Particle image analysis 
4.1. Procedure 

A variety of statistical methods may be applied to the frozen turbulent flow 
represented by streak photographs such as figure 1 (a-c) .  In  these photographs, the 
beginning of each streak is composed of a bright spot followed by a less bright tail. 
Provided that particles do not move out of the illuminated region, their length is 
proportional to their velocity integrated over the exposure time, 6t. The practical 
choice of 6t reflects a compromise between upper bounds due to excessive curvature 
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FIGITRE 1 ( a , h ) .  For caption S ~ P  facing page. 
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FIGURE 1.  Streak photographs of frozen fields showing examples of the long-time behaviour of 
meso-scale eddy structures at upwelling fronts and their immediate vicinity. Photographs (a+) 
correspond to experiments e, c and a, respectively. 

of the particle tracks and lower limits on the detectability of motion in low-speed 
regions. The exposure times (0.5, 1 s) were determined by the internal timer of a 
Nikon F2 camera. At thesc shutter speeds the uncertainty in 6t is less than 1 %. I n  
each digitized photograph, the end points of 2000-4000 particle streaks were 
digitized. The irregularly spaced particle velocity data were interpolated on to a 32' 
grid by convolution with an adaptive Gaussian window, as described by Agiii & 
Jimenez (1987). 

4.2. Error estimates 

The likely sources and magnitudes of the errors in both of these processes have been 
considered in some detail by Imaichi & Ohmi (1983), Agiii & Jimenez (1987) and 
Rignot & Spedding (1988). A reasonable error estimate for image digitization is 5 % ,  
which is likely to  be significantly below the errors introduced by the subsequent 
interpolation. Rignot & Spedding (1988) presented a detailed comparison between 
smoothing window-based (adaptive Gaussian window, AGW) interpolations and a 
thin shell spline (STS) method for the particular case of particle tracking in fluid 
flows. The magnitude of these errors may be expressed as a function of the 
characteristic lengthscale of the flow, I,, the mean nearest-neighbour distance 
between particles, 6, and the grid spacing, h. These may be written as the 
dimensionless ratios LIH and h/S ,  which take the values 5 and 2.5 respectively on 
average in this case. Thus, one might expect a priori errors in u and w of the order 
of 5 and 10% respectively, according to the simulations of Rignot & Spedding. 
Bootstrap error estimates on the interpolated u- and w-fields support this prediction. 
Clearly the interpolated grid results need to be interpreted with caution. The 
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accuracy of the AGW technique is not sufficient to determine the details of the shapes 
of the w-distributions and the satisfactory h/S ratio is achieved at the expense of L / h  ; 
in other words the resolution a t  small scales is poor. The highest accessible 
wavenumber k x n, but values for k several times smaller than this may be suspect. 
Since values of k > 1 are of some interest in this study, an extensive range of grid 
interpolations were performed, varying the relative grid size, implicit and explicit 
smoothing parameters and differencing schemes for the AGW interpolation. 
Comparisons were also made with selected STS and local linear least-squares 
interpolators. The shape of the global E(k)  spectrum below k x 2 was not affected by 
changes in the interpolation scheme, nor by small changes in h around the actual 
values used for the AGW interpolations reported here. By contrast, the tail of the 
E(k)  distribution, for k > 2, could be moved almost at  will by altering the 
interpolation parameters. The distributions plotted here appear to lie on linear 
extrapolations of the data inside k = 2, but these values are extremely sensitive to 
the analysis techniques, and should not be taken as accurate. The estimate of 
spectral slopes in the enstrophy cascade range must be made from the rather small 
range of 1 6 k 6 2. From the comparative and parametric studies of the grid 
interpolation techniques, the contribution to the uncertainty in assigning an 
exponent to the energy decay in this region from the interpolation process is 
approximately & 0.5. 

The seeding particles themselves are neutrally buoyant, and have a mean diameter 
of approximately 0.83 mm. The minimum resolvable lengthscale, dictated first by 
the particle density, and second by the grid mesh size, h, is more than an order of 
magnitude larger than this. 

4.3. Measurements 
The global energy spectrum of each flow field image was estimated in three different 
ways : (a )  relative particle dispersion measurements, ( b )  two-dimensional Fourier 
transform of the turbulent kinetic energy field ($A”) on the grid data, and ( c )  Fourier 
transforms of the longitudinal two-point turbulent velocity correlation coefficients. 
There are different assumptions, implicit or explicit, behind each of these techniques 
which will be discussed in turn. One may note that technique ( b )  uses the grid- 
interpolated data, while techniques (a)  and ( c )  do not. 

5. Results 
5.1. Method (a)  

Particle dispersion methods were introduced by Morel & Larcheveque (1974) to 
calculate the energy spectrum of large-scale atmospheric turbulence by observing the 
relative motion of balloon pairs. Griffiths & Hopfinger (1984) extended this 
dispersion method, based on a suggestion by one of the present authors, to  calculate 
E from an analysis of streak photographs similar to those of the present study. 
Briefly, they related the mean-square relative velocities of the particle pairs (or the 
structure function, Mory & Hopfinger 1986) ( (dD/dt)2),  to their separation (0) to 
find 

((gy) 
where D is the mean separation of the particle pairs, t is the time and the angle 
brackets indicate an average over all particle pairs. In (1) the turbulence is assumed 
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FIQURE 2. Variation of particle dispersion (ISD2/Stl) with separation D ;  ( w e )  correspond to 
experiments a+, respectively. The vertical arrows indicate the wavelength of the frontal eddies. 
Values of the slopes are indicated. 

to be stationary and homogeneous and the energy spectrum takes the form of a 
simple power law, E - k-", where a is an unknown constant to be determined 
experimentally. A sharp cut-off at  some energy dissipation wavenumber and local 
particle dynamics are assumed in the analysis leading to (1). 

The same authors also considered the dissipation rate, or diffusivity of particle 
pairs (dD2/dt), and since the mean Eulerian value of this quantity over a large 
number of particle pairs in a two-dimensional flow should be zero, Griffiths & 
Hopfinger (1984) defined a quadratic diffusivity (IdD2/dtl) and related it to (0) to 
find 

Note that (2) was obtained using the same assumptions used to obtain (1). 
In order to obtain a and therefore the form of E, we adopt the data collection 

technique introduced by Griffiths & Hopfinger (1984). Consider two particles located 
at initial positions rl and r2 at the beginning of a photographic exposure, and a t  ri 
and ri  after time at, and define the mean separation D = + ( ( T ~ - T T ; ) +  ( r 2 - r l ) ) ,  the 
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FIGURE 3. Variation to the mean square relative velocity ( ( G D / C ~ ~ ) ~ )  with separation D ;  (a@ 
correspond to experiments a 4  reqectively. The arrows are as in figure 2 and values of the spectral 
slopes are indicated. Kote the different vertical scales for (a ,  b )  and (c, d )  respectively. 

change SD = ( r i - r i ) - ( r 2 - r l )  and S(D2) = 2DS(D) = ( r i - r i ) 2 - ( r z - r l ) z .  These 
quantities may be calculated directly for every particle pair in a given digitized 
photograph and, given St, then the left-hand side of (1) and ( 2 )  can be calculated for 
all particle pairs for given separations. 

To compute a, the quadratic diffusivity( IdD2/dtl) and the structure function 
((dD/dt)2) are plotted as a function of the separations D in figures 2 and 3 for the 
five experiments. In  general, for each experiment, there appear to be two ranges of 
D where straight lines may be fitted to the data, and these two lines intersect at a 
value of D x A,. The slopes of these lines, which were fitted by eye, do not vary 
significantly with 8*. For D < A,, a x + 2 ,  considerably smaller than the value of + 3 
of classical turbulence results, and smaller still than typical numerical simulation 
results. When Babiano et al. ( 1985) substituted non-local energy spectra steeper than 
k3 into the analysis leading to ( l ) ,  they found that the structure function ((dD/dt) ') 
saturated at D2,  and became independent of the true exponent, a. Their results 
indicated that ( 1 )  is valid only for 1 < a < 3, and the use of ( 1 )  for measurements in 
the laboratory flows should always give a spectral slope within that range. This may 
explain why spectral slopes a < 3 were obtained in the present and previous 
laboratory studies when particle dispersion methods were used. 

For wavelengths greater than A,, figures 2 and 3 imply that 01 x +$, less than the 
+ predicted by classical theories for the inverse energy cascade inertia range. 
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FIGURE 4. The original particle streak data as interpolated on to a regular 322 grid by convolution 
with an adaptive Gaussian window. Here (a+) correspond to figure 1 (a+) respectively. 

Although this method did not produce the spectral slopes obtained in theories and 
numerical simulations, it does suggest that the input wavelength is about the same 
as the mean diameter of the frontal eddies A,. 

5.2. Method ( b )  
Here, one computes a two-dimensional FFT on the square-grid-interpolated u” field 
(figure 4). With only a 32 x 32 resolution in x and y ,  only a limited range of Fourier 
coefficients are calculated, and great care must be taken in windowing the data at the 
edges and centre of the square grid, which has been superimposed on data occupying 
an annulus-shaped region within its borders. The two-dimensional spectra were 
collapsed on a one-dimensional transect by adding values around circular shells 
centred at the origin (kx,, ky,). The procedure was similar to that described by Armi 
& Flament (1985) and their cautionary remarks concerning the interpretation of 
power spectra should be borne in mind here. Particular care should be taken for the 
higher values of k, where details of the interpolation, smoothing and windowing 
techniques may have a significant influence, as discussed in $4. 

Once again the E(k)  curves (figure 5 )  appear to be divisable into two regions, each 

5 FLM 223 
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I 

FIGURE 5.  One-dimensional energy spectra ( e )  as a function of wavenumber (k), inferred from a 
direct two-dimensional, FFT of the u ' ~  velocities deduced from the interpolated data  such as those 
shown in figure 4. The labels (a-e) correspond to  those in figure 2. Rough estimates of spectral 
slopes are indicated for each experiment. The vertical arrows indicate the wavenumber of the 
frontal eddies. 

of which may be approximated by a straight line fit (by eye). At low k, the slopes are 
consistent with a - Q  law; above a relatively well-defined value of k, however, all 
spectra show a much steeper drop-off, having values of approximately -5.5 for a 
wide range of values of 8,. 

While the -f slopes are quite consistent with the inverse energy cascade described 
by statistical theory of forced two-dimensional turbulence, the high-wavenumber 
behaviour differs from thc predicted - 3 law, in common with results from a number 
of numerical experiments for both the constant-forcing and the freely decaying cases 
(e.g. McWilliams 1984; Frisch & Sulem 1984; Herring & McWilliams 1985; Brachct 
et al. 1988) and as found also by Sommeria (1986) for mercury in a closed box in the 
presence of a strong magnetic field. In general, attention has been focused on the 
development and subsequent evolution of isolated patches of vorticity which persist 
for long times and seem to be responsible for exponents steeper than - 3 .  Santangelo 
et al. (1989) have shown that the value of a is actually quite sensitive to  the shape 
of the initial energy spectrum in the freely decaying case and i t  is reasonable to 
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suppose that this role might be assumed by the nature of the forcing in the stationary 
case. Under these circumstances the many different values of spectral slopes reported 
in the literature are not so surprising. As these authors noted, this sensitivity to 
initial conditions casts some doubt as to the truly universal nature of two- 
dimensional turbulence, or at least numerical simulations of it. 

In the present study, the recorded turbulent velocity field represents the fully 
developed, long-time behaviour of the flow (see Q 3). Figure 6 (a+) shows examples of 
contour maps of the vorticity field in which many coherent vortex structures can be 
seen. These structures are closely packed as in Brachet et al. (1988) and Santangelo 
et al. (1989) for example, and not isolated as found by McWilliams (1984). Given the 
nature of the int,erpolation technique, one is almost guaranteed that the higher-order 
statistical moments have not converged and only the most general remarks may be 
made. Having said that, the kurtosis of the vorticity field, 

is a measure of the flatness of the vorticity distribution wii on the M x N grid array. 
The mean value was 4.0 over experiments a+ and the maximum value was 4.6. This 
is far below the values of 10-30 reported by McWilliams (1984) and is more 
comparable to the value of a Gaussian distribution where k = 3. We can make no 
more precise statements on the shape of the vortices except that they are not isolated 
and strongly peaked. Nevertheless, we found that such coherent vortex structures 
can actually produce an approximately k-5.5 energy spectrum. This implies that, so 
far as the long-time behaviour of the flow is concerned, the slope of energy spectra 
at higher k is always steeper than k-3, regardless of the degree of isolation of the 
coherent vortices. The fact that the turbulent flow in our laboratory model is forced, 
rather than freely decaying, may reduce the degree of isolation, as vortices of size A, 
are constantly generated a t  the front and injected into the system. 

If the wavenumber k,  = 27c/A, corresponds to the frequency a t  which most energy 
is injected into the flow field then the two spectral slopes for each experiment should 
meet at this point on the k-axis. Figure 5 shows that this is a plausible interpretation 
of the data for each of the five different values of 6,. Since A, N (g’h,)/(u, f) is a 
function of both the Rossby deformation radius Ro = (g’h,)0.5/f and the Richardson 
number Ri = (g’h,)/u:, we can write 

Table 2 shows the values of A,, Ro, Ri, a (at large k )  and 0, for experiments a-e of 
figure 5, respectively. This table shows that in any given experiment A, is about 3 
times greater than Ro. Initially, when the eddies first appear at the front they have 
a size comparable with Ro, but they continue to grow to a final size A,, controlled by 
0,. When the values of A, obtained in the present study were compared with those 
obtained in previous studies of baroclinic turbulence (Phillips 1954 ; Griffiths & 
Linden 1982, Chia, Griffiths & Linden 1982 ; and Killworth, Paldor & Stern 1984) a 
good agreement was achieved. Under circumstances (figure l c )  when eddies are 
pinched-off from the front (see §3) ,  their scale increases to values of - 4A, and/or 
N 12Ro. At this stage such eddies could be of equivalent-barotropic type (McWilliams 
1984). However, Griffiths & Linden (1981) showed that a t  values of h,/H 2 0.25 ( H  
is the average total depth of the water), which is the case in the present experiments, 
the generated instabilities are of baroclinic type. 

5-2 
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FIGURE 6 (a, b) .  For caption see facing page. 
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0 (c) 10 20 30 40 50 60 

FIQURE 6. Isovorticity contours for the grids of figure 4. There are 16 contour levels, linearly spaced 
between wmin and om,,. Contour levels drawn outside the boundaries of the tank (heavy lines) are 
artifacts of the contouring routine which insists on data on a rectangular grid. The cyclones are 
indicated by C, while the anticyclones by A. 

A, (cm) Ro Ri U 0, 

a 4.3 1.5 355 -5.6 1.7 
b 7.0 2.4 416 -6.0 4.0 
c 9.6 2.8 422 -5.5 7.5 
d 11.0 3.6 408 -5.0 11.0 
e 13.2 4.0 449 -5.5 20.0 

TABLE 2. 

5.3 Method ( c )  

This method is used widely in calculating one-dimensional energy spectra in three- 
dimensional isotropic turbulence. Assuming the turbulence to be isotropic, the values 
of the longitudinal velocity correlation coefficients F ( r ) ,  are defined by 

where u1 denotes the velocity components parallel to the vector separation r .  The 
velocity components u ( x )  and u(x+ r )  were obtained directly from projection of the 
particle streaks a t  x and x + r on r .  Hcre, 2 is defined by 

for N particles. F ( r )  was calculated for each particle pair in a given streak 
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FIGURE 7 .  Variation of the longitudinal velocity correlation function F as a function of 

separation r ,  for experiments a, b and e. 

r (cm) 

FIGURE 8. Variation of the lateral velocity correlation function G as a function of separation r ,  
for experiments a, b and e. 

photograph, and the results were averaged for a number of discrete bins in r .  F ( r )  is 
plotted for experiments a, b, and e in figure 7 .  Similarly, the values of lateral 
correlation coefficients G ( r )  were calculated and plotted in figure 8. G(r )  is defined by 

where uz denotes velocity components perpendicular to vector separation r .  Figures 
7 and 8 indicate that the form of the functions F(r )  and G ( r )  is typical of that 
predicted theoretically for two-dimensional turbulence (for example, see Townsend 
1976, pp. 1 4 ) .  

The Fourier transform of the longitudinal correlation function F ( r )  allows the E ( k )  
spectrum to be estimated and two examples appear in figures 9 and 10, for 8* = 4 and 
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FIGURE 10. As in figure 9, but  for experiment b. 

10' 

20 (experiments b and e). The ringing of the data derived from the transformed 
correlation functions is a consequence of the spline interpolation of F(r )  
preceding the transform operation and is hard to remove, but the upper envelope 
of this curve corresponds quite closely to the results from method ( b ) .  
Hence, a t  wavenumbers k < k,, the spectral slope generated using method ( c )  is 
consistent with k-:, the inverse cascade inertia range. At wavenumbers k > k,, 
method ( c )  did not produce well-correlated energy spectra when compared with the 
results generated by method ( b ) ,  but in an average sense the spectral slopes are close 
to  those that ( - k-5.5) given by method ( b ) .  The fact that  methods ( b )  and ( c )  give 
similar decay laws to within experimental accuracy lends a degree of support for the 
interpolation procedures required for ( b ) .  

5.4 The Kolmogorov constant 
It is possible to  estimate the two-dimensional Kolmogorov constant (C) in the 
equation 

E ( K )  = c€"k)-:, (8) 

FIGURE 9. One-dimensional energy spectra E as a function of wavenumber k, calculated by ( b )  
method ( b ) ,  and (c) method ( e )  for experiment e .  
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A E C 0, Rt 

a 0 . 5 ~  0 . 7 5 ~  2.8 1.7 340 
b 0 . 5 ~  0 . 7 3 ~  2.86 4.0 460 
c 0 . 5 2 ~  0 . 6 ~  3.4 7.5 660 
d 0 . 6 ~  0 . 4 8 ~  3.8 11.0 611 
e 0 . 5 ~  0.48~ l W 4  3.8 20.0 830 

TABLE 3. 

where E is the rate of energy injection to large scales. For the inverse cascade range, 
figure 5 gives an energy spectrum of the form 

where the constant A can be determined directly from figure 5 .  Comparing (8) and (9) 
we find 

E(k)  = A(k)-e, (9) 

A C = -  
Ef 

If the bottom layer is stationary (Narimousa & Maxworthy 1985), and the dissipation 
driving the Ekman layer is small compared with the dissipation at the interface, then 
the injected kinetic energy is dissipated mostly due to the action of molecular 
viscosity, and e can be estimated from 

E = 2v k2E(k) dk (11) 1: 
(see Batchelor 1953, $6.4 and Lesieur 1987, 55.3) .  Substituting (9) for E ( k )  and 
integrating (1  1) within the range of wavenumbers in which figure 5 indicates the k-; 
inertia range, we find the value of e and then from (10) the value of C. Table 3 shows 
the estimated values of A, e and C for experiments a-e of figure 5 ,  respectively. These 
values of C are within the range of those estimated by Lilly (1969), 4.3-6.2 ; Herring 
& Kraichnan (1975), 6.5; Herring & McWilliams (1985), 2.9-4.8; and Sommeria 
(1986), 3-7 ; but smaller than those of Frisch & Sulem (1984), 9 ; and much smaller 
than those of Siggia & Aref (1981), 14. The above table shows also the values of 8, 
and R, = uZ,/v, where li x A, is the input wavelength, v is the kinematic viscosity and 
u is the r.m.s. turbulent velocity. 

6. Summary and conclusions 
Fully developed, forced upwelling fronts and their associated frontal and pinched- 

off eddies were produced in a laboratory tank. Streak photographs of such a flow 
fields were digitized and recorded. To obtain the spectral distribution of kinetic 
energy a variety of statistical techniques were performed on the recorded data. The 
results of the computations are as follows: 

(i) When particle dispersion methods were employed, both the relative velocity 
and the quadratic diffusivity measurements indicated energy spectra of the form 
E k-2+0.05  a t  higher wavenumbers. This spectral slope is much smaller than 
predicted by both the classical statistical theories and numerical simulations of two- 
dimensional turbulence, for the enstrophy cascade inertia range. The slope of energy 
spectra a t  lower k was consistent with k-t, which was slightly less steep than 
predictions (k-g) given by these same theories. Although these methods produced less 
steep spectral slopes, it appears that two inertial subranges were generated and more 
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importantly suggested that the input wavenumber was close to  the wavenumber of 
the frontal eddies (k , ) .  

(ii) Direct two-dimensional Fourier transforms of the ~ ’ ~ ( 2 ,  y)-field were reduced 
to one-dimensional E(k)  spectra and produced two distinct inertial ranges also; a k-c 
spectrum at lower k and one approximately varying as k-5-5 at  higher k .  The k-1 result 
is consistent with that predicted for the inverse energy cascade inertia range, and the 
k-5.5 is similar to those obtained in numerical simulations for the enstrophy cascade in 
stationary flows. The two inertial ranges meet close to a wavenumber that is 
associated with the wavenumber of the frontal eddies ( k ,  - 2n(u,f/g’ho)) so that k,  
acts as the input wavenumber. However, these remarks should be judged cautiously 
since inspection of the vorticity and kinetic energy fields suggests that the high- 
wavenumber energy is associated with the relatively small-scale peaks of the vortex 
structures and probably not with any filamentary structures on the flanks of the 
vortices, which we cannot resolve, and which are usually thought to be responsible 
for the small-scale portion of the energy spectrum which evolves. By the same token, 
this further suggests that the usual notion of an enstrophy cascade in the fine 
filamentary structure around the flanks of the vortices should be viewed with some 
care. 

(iii) E ( k )  distributions derived from Fourier transforms of the one-dimensional 
longitudinal turbulent velocity correlations revealed spectra varying like k-e a t  lower 
k ,  which was in agreement with that obtained above. At higher values of k > k ,  the 
slope is consistent with the results shown in $5.2. 

(iv) According to classical theories and numerical simulations of two-dimensional 
or geostrophic turbulence, the spectral slopes ( k f  a t  k < k ,  and l P 5  a t  k > k,) found 
in the present study suggest that  turbulence in our model is two-dimensional. This 
in turn suggests that  the prototype system that we are attempting to model can also 
be considered to  be a two-dimensional turbulent field. Since jet-like structures 
evolve in such a field in the laboratory then presumably they do also in the natural 
flow : this helps to explain the filamentary structures which transport passive 
markers, e.g. heat, as observed in satellite images. 

(v) We have estimated the two-dimensional Kolmogorov constant (C), within the 
k-5 inertia range. The values of G varied within the range 2.8 < C < 3.8, for a rather 
wide range of values O* and R,. It appeared that slight increases in the value of C 
corresponded to an increase in the values of both O* and/or R,. 

This work was supported by the ONR under the ARI on the Coastal Transition 
Zone. Contract No. N.00014-87-K-0809 to USC. 
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