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Boussinesq global modes and stability
sensitivity, with applications to stratified wakes
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For the Boussinesq equations, we present a theory of linear stability sensitivity to
base flow density and velocity modifications. Given a steady-state flow with small
density variations, the sensitivity of the stability eigenvalues is computed from the
direct and adjoint global modes of the linearised Boussinesq equations, similarly
to Marquet et al. (J. Fluid Mech., vol. 615, 2008, pp. 221–252). Combinations
of the density and velocity components of these modes reveal multiple production
and transport mechanisms that contribute to the eigenvalue sensitivity. We present
an application of the sensitivity theory to a stably linearly density-stratified flow
around a thin plate at a 90◦ angle of attack, a Reynolds number of 30 and Froude
numbers of 1, 8 and ∞. The global mode analysis reveals lightly damped undulations
pervading through the entire domain, which are predicted by both inviscid uniform
base flow theory and Orr–Sommerfeld theory. The sensitivity to base flow velocity
modifications is primarily concentrated just downstream of the bluff body. On the
other hand, the sensitivity to base flow density modifications is concentrated in
regions both immediately upstream and immediately downstream of the plate. Both
sensitivities have a greater upstream presence for lower Froude numbers.

Key words: instability, stratified flows, wakes

1. Introduction
Over the last decade, sensitivity theory has become a driving force in the study of

global linear stability. By considering infinitesimal perturbations of steady-state flows,
such a theory has efficiently and effectively described corresponding perturbations
in flow stability, especially for constant-density flows. On the other hand, density-
stratified flows – particularly those with continuous stable stratifications, as in oceans
and the atmosphere – have been well studied for over half a century. Although far
from solved, the study of density stratification has led to powerful explanations of
hallmark behaviours in geophysical flows (see, e.g. the reviews by Garrett & Munk
1979; Rhines 1979; Wunsch & Ferrari 2004; Spedding 2014).

This manuscript presents what we believe is the first attempt to link the two topics,
by addressing the stability sensitivity of density-stratified flows. In fact, the sensitivity
theory is presented broadly for the Boussinesq equations, with no restriction that the
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(a) (b)

FIGURE 1. (Colour online) A flow from left to right with a stable, linear, vertical density
stratification encounters a vertical thin plate (green) of unit height, at Re= 30, Fr= 1 and
Pr= 7.19. Colours distinguish the density perturbation from the background stratification
(red: positive; blue: negative). (a) The domain [−60, 60] × [−60, 60], with exaggerated
colours for clarity; the plate is not visible. (b) The domain [−4, 12] × [−8, 8], with
streamlines also shown.

flow in question be density stratified. Nevertheless, we focus our core examples on the
stably linearly density-stratified flow around a bluff body (figure 1), so as to highlight
core flow features often found in oceanographic flows. By pursuing such examples, we
are able not only to replicate sensitivity features found in constant-density flows, but
also to reveal previously unseen qualities unique to density-stratified flow physics.

The essence of linear stability sensitivity theory is to determine the effect of
infinitesimal base flow perturbations on the stability of that state. One of the first
noteworthy stability sensitivity studies was conducted by Hill (1992), who determined
the stability of perturbed base flows. Bottaro, Corbett & Luchini (2003) then examined
the effect of base flow velocity perturbations on the stability of parallel flows, via the
well-known Orr–Sommerfeld equations. Marquet, Sipp & Jacquin (2008) later built
further upon the work of Hill, examining the sensitivity of a cylinder flow. Marquet
et al.’s theory calculates the stability perturbations that result from infinitesimal
changes in the base flow velocity, or alternatively, from the presence of a steady
force.

Simultaneously, Giannetti & Luchini (2007) presented the sensitivity to spatially
localised feedback. In essence, the theory determines the effect that a point feedback
mechanism – e.g. by a collocated point actuator and sensor acting under a proportional
control law – would have on the flow stability, as a function of the point location
in the flow. The most striking result of the sensitivity studies was that the region
of high sensitivity in a Re = 50 cylinder flow matched very closely with the loci
where a small stationary secondary cylinder suppresses the vortex shedding of the
main cylinder (Strykowski & Sreenivasan 1990). In this flow, the base flow sensitivity
at Re = 46.8 is qualitatively similar to the sensitivity to spatially localised feedback,
albeit with some minor differences. In fact, the two sensitivity calculations are similar,
as they are both based on various combinations of the linearised flow operator’s direct
and adjoint eigenmodes.

These seminal works paved the way for further developments in the theory and
application of stability sensitivity over the last several years. Giannetti, Camarri &
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1148 K. K. Chen and G. R. Spedding

Luchini (2010) analysed the secondary instability of the two-dimensional cylinder
flow at Reynolds numbers in the low hundreds. Of particular note in the appendix of
this work is a profound comment that recirculation regions exhibit particularly high
sensitivity to spatially localised feedback. The authors suggest that such a relation
can be explained using a local theory. In such an explanation, short-wavelength
disturbances are convected by the velocity field, leading to positive feedback
mechanisms in recirculation regions where small disturbances can self-amplify and
greatly affect the flow stability. The relation between sensitivity and recirculation
has also been found in more complex two- and three-dimensional flows (e.g. Fani,
Camarri & Salvetti 2013; Qadri, Mistry & Juniper 2013; Lashgari et al. 2014; Chen,
Rowley & Stone 2015). Although we do not pursue the short-wavelength theory, it
does motivate us to analyse the stability sensitivity of a bluff-body flow exhibiting
recirculation later in this manuscript.

Aside from the aforementioned works, there exist many recent studies applying
sensitivity theories to various flows. Instead of listing these in detail, we point out
a few alternate techniques that have been developed. Meliga, Pujals & Serre (2012)
successfully applied Marquet et al.’s sensitivity study to a steady force at a high
Reynolds number of 13 000, using the global eigenmodes about a mean flow instead
of a steady-state flow. Next, Fani et al. (2013) studied the flow through a T-shaped
mixer and computed the stability sensitivity specifically to the velocity distribution
of the inlet. In a shift from the application of sensitivity theories specifically to
stability, Meliga et al. (2014) studied the sensitivity of a bluff body’s drag force. In
addition, Boujo and Gallaire (2014) examined the sensitivity of features related to
flow separation, and applied the theory to the flow over a bump.

The discussion of linear stability and sensitivity theories can be found in a few
review articles. Chomaz (2005) discusses global stability theory and addresses the role
of non-normality and nonlinearity. Luchini & Bottaro (2014) specifically focus on the
role of adjoint equations in stability theory. Finally, Schmid & Brandt (2014) discuss
stability, receptivity (as given by adjoint operators) and sensitivity from the general
standpoint of optimisation instead of eigendecompositions. Such an approach allows
more general discussions of flow systems beyond simple steady states.

At this point, we shift our discussion to density-stratified flows. We focus
particularly on stratifications where the background density field is a continuous,
monotonically increasing function of displacement in the direction of gravity. These
conditions are encountered in oceanographic and atmospheric flows, and form the
basis of our computational examples later on. The discussion of stratified flow physics
is too expansive to be reviewed here. The basic underlying theory is discussed in the
review article by Yih (1969) and the book by Turner (1973). The topic of stratified
flow stability is one that deserves mention, but is still too wide of a topic to be
reviewed here. The elementary theory is reviewed in the text by Drazin & Reid
(2004).

Instead, we highlight a few works that provide a context for the application we
present. First and foremost, it is well known that inviscid parallel flows with non-zero
velocity shear and Richardson number greater than 1/4 (that is, Froude number less
than 2) everywhere in the flow are unconditionally stable (Miles 1961). Focusing now
on non-parallel flows, the topic of the vertical collapse of stratified wakes has been
the subject of decades of work (see reviews by Lin & Pao (1979), Riley & Lelong
(2000) and Spedding (2014)). Although the relation between stratified wake collapse
and stratified flow stability may not be entirely direct, the former has inspired further
research in the latter. For instance, vortices in collapsed stratified turbulent wakes
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Boussinesq global modes and stability sensitivity in stratified wakes 1149

have been shown to exhibit greater persistence, organisation and coherence than in
unstratified wakes (Gourlay et al. 2001).

Somewhat paradoxically, laminar horizontal vortex rings can also exhibit instability
and a subsequent collapse in density-stratified flows (van Atta & Hopfinger 1989;
Johari & Fang 1997). Similarly, the zigzag instability of vertical vortex pairs and
the subsequent evolution into pancake vortices was reported by Billant & Chomaz
(2000) and in subsequent papers. Pancake vortices have since been observed in many
different stratified flows, and their stability was studied by Negretti & Billant (2013).
Boulanger, Meunier & Le Dizès (2008) and Candelier, Le Dizès & Millet (2011)
respectively examined the instability of a tilted Lamb–Oseen vortex and a tilted
Bickley jet in a stratified flow. Le Dizès & Billant (2009) reported analytical findings
specifically on radiative instabilities in stratified flows. Bosco & Meunier (2014)
then presented theoretical, experimental and numerical results on the instabilities of
stratified wake around a cylinder. Recently, Kaminski, Caulfield & Taylor (2014)
and Ortiz, Donnadieu & Chomaz (2015) respectively analysed the finite-time optimal
perturbations of a shear layer and a counter-rotating horizontal vortex pair in a
stratified medium.

Again, we do not intend to delve into the details of stratified flow stability, for
which there exists a vast literature covering theory, experiments and computations
across a wide array of flow conditions. Instead, we merely point out that density
stratification can cause complex instabilities that may not be obvious to those more
familiar with constant-density flows. These instabilities are the focus of the examples
we present later.

In this manuscript, our chief focus is to extend the theory of sensitivity to base
flow modifications (Marquet et al. 2008) to the Boussinesq equations. The subsequent
theory allows us to compute the sensitivity of stability eigenvalues to infinitesimal
perturbations in the density or velocity components of base flows. As in Marquet
et al. (2008), the sensitivities can be broken down into growth rate and frequency
sensitivities. In addition, the construction of the theory reveals the mechanisms
by which base flow modifications transport or produce flow perturbations, thereby
contributing to the sensitivities.

We demonstrate the theory with a two-dimensional computational example, whereby
a flow with a stable linear density stratification encounters a thin plate oriented
transversely to the flow (figure 1). In this example, the Reynolds and Prandtl numbers
are fixed respectively at 30 and 7.19, and we investigate Froude numbers of 1, 8
and ∞.

This manuscript is organised as follows. In § 2, we state the Boussinesq equations
and develop the sensitivity to base flow modifications. The computational examples
are shown in § 3. Discussions on parallel flow theory, as well as simulations with
modified base flows, are presented in § 4. Finally, we summarise the manuscript and
provide directions for future work in § 5. The computational methods are described
in appendix A and the derivation of an Orr–Sommerfeld-type equation is given in
appendix B.

2. Theory
In this section, our primary aim is to present the sensitivity to base flow

modifications for the Boussinesq equations. The Boussinesq equations, along with a
discussion of the choice of non-dimensionalisation, are presented in § 2.1. The main
sensitivity theory, which is presented as partial sensitivities – that is, in terms of
partial derivatives – is derived in § 2.2. Finally, in § 2.3, we provide some remarks on
how the partial sensitivities could be conceptually combined to form a total sensitivity.
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1150 K. K. Chen and G. R. Spedding

2.1. Boussinesq equations
In this manuscript, we focus specifically on the Boussinesq equations as an
approximation of mass and momentum conservation when density fluctuations are
suitably small. As in the typical case, we employ the Boussinesq model to simplify
the governing equations, with the understanding that they are sufficiently accurate
to describe oceanographic and atmospheric flows. Nevertheless, it is obviously the
case that many density-varying flows of practical importance cannot be accurately
described with the Boussinesq equations. The base flow sensitivity in these situations
is a topic reserved for future research.

In the following section, let us assume that variables and operators marked
by ( ·̃ ) are dimensional, and all others are non-dimensional. Let x̃ := [x̃ ỹ z̃

]T

and t̃ respectively denote displacement and time, and let ρ̃(x̃, t̃), ũ(x̃, t̃) :=[
ũ(x̃, t̃) ṽ(x̃, t̃) w̃(x̃, t̃)

]T and p̃(x̃, t̃) respectively denote the density, velocity and
pressure fields. Also, let µ̃ denote the viscosity, α̃ denote the diffusivity of density
(which may be, for instance, the effect of thermal conductivity or salinity diffusion),
g̃ denote the gravitational acceleration vector and ρ̃c denote a constant density that is
characteristic of the entire density field ρ̃(x̃, t̃). The dimensional Boussinesq equations
we employ are

∂

∂ t̃

[
ρ̃
ũ

]
=
 −ũ · ∇̃ρ̃ + α̃∇̃2ρ̃

−ũ · ∇̃ũ− 1
ρ̃c

(
∇̃p̃+ µ̃∇̃2ũ+ ρ̃g̃

) , (2.1)

subject to ∇̃ · ũ= 0 and a problem-dependent set of boundary conditions. This is the
form used in most descriptions of stratified flows.

There exist at least two sensible ways to non-dimensionalise these equations.
In either case, we begin by selecting some characteristic length scale x̃c, usually
determined by the size of some solid body of interest, and some characteristic
velocity scale ũc, usually given by a free-stream flow speed. The non-dimensional
parameters associated with these scales are

x := x̃
x̃c
, u := ũ

ũc
, t := ũc t̃

x̃c
, p := p̃

ρ̃cũ2
c

, Re := ρ̃cx̃cũc

µ̃
, Pr := µ̃

ρ̃cα̃
, (2.2a−f )

and likewise for x, y, z, u, v and w. The associated operators are

∇ := x̃c∇̃, ∇2 :=∇ ·∇= x̃2
c∇̃2. (2.3a,b)

The remaining terms are the density field and gravitational acceleration. If the flow
in question is known to be linearly density stratified, then it is typically preferable
to non-dimensionalise the density by the background density change 1ρ̃ > 0 that is
encountered over a displacement of x̃c, or some other vertical scale, in the direction
of gravity (see, e.g. de Stadler, Sarkar & Brucker 2010 and Ortiz et al. 2015). In this
framework, the dimensional background density field is

ρ̃b(x̃)= ρ̃c − 1ρ̃ỹ
x̃c

. (2.4)

If g̃ :=‖g̃‖ and we define the Brunt–Väisälä frequency (i.e. the characteristic buoyancy
frequency) by

Ñ :=
√
1ρ̃g̃
ρ̃cx̃c

, (2.5)
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then the Froude number

Fr := ũc

Ñx̃c
= ũc

√
ρ̃c

1ρ̃g̃x̃c
(2.6)

indicates the ratio the buoyancy time scale to the convective time scale in the flow.
The limit Fr→∞ indicates that the flow is unstratified or that gravity is absent.

In this approach, we would define the non-dimensional density

ρ∆ := ρ̃

1ρ̃
. (2.7)

The advantage of this non-dimensionalisation is that the Froude number directly
appears in the momentum equation, which is written as

∂

∂t

[
ρ∆
u

]
=

 −u · ∇ρ∆ + ∇
2ρ∆

Re Pr

−u · ∇u−∇p+ ∇
2u

Re
+ ρ∆eg

Fr2

 , (2.8)

where eg is the unit vector in the direction of gravity and the dimensional g̃ has been
replaced by Fr−2 (see (6) in de Stadler et al. 2010). Therefore, the strength of the
stratification, which is embodied by Fr, is immediately apparent in the resulting non-
dimensional Boussinesq equations.

For the purposes of our theoretical development, however, we wish to employ the
Boussinesq equations in their general form, without requiring that the background
density be linearly stratified. Therefore, we will employ an alternate non-dimensionali-
sation of density and gravity. This approach affords us broader applicability, at the cost
that the equations may be less intuitive in the special case of stratified flows. Let us
define

ρ := ρ̃

ρ̃c
, g := x̃cg̃

ũ2
c

. (2.9a,b)

The Boussinesq operator N and associated partial differential equation then become

∂

∂t

[
ρ

u

]
=N

([
ρ

u

])
:=

 −u · ∇ρ + ∇
2ρ

Re Pr

−u · ∇u−∇p+ ∇
2u

Re
+ ρg

 , (2.10)

subject to ∇ · u= 0 and a problem-dependent set of boundary conditions.
If we do suppose that the flow in question is stably linearly stratified, then we

define g := ‖g‖ and set 1ρ := 1ρ̃/ρ̃c > 0 as the background density change over
a displacement of one non-dimensional unit in the direction of gravity. The Froude
number (2.6) is then

Fr= 1√
1ρg

. (2.11)

In this formulation, the choice of 1ρ and g for a given Fr is admittedly somewhat
ambiguous. An examination of (2.10) reveals that ρ and g can be freely scaled
inversely proportionally to each other, with no effect on u. How, then, should the
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1152 K. K. Chen and G. R. Spedding

Froude number be set? In the stratification-based non-dimensionalisation (2.7), (2.8),
some authors fix the density scale while varying gravity (e.g. de Stadler et al. 2010).
We choose to do the opposite, which is to fix g but vary the 1ρ scale. This approach
is more physically intuitive, since in reality, the Fr =∞ case is more accurately an
absence of stratification than an absence of gravity. The choice of density scaling will
have an effect on the inner product over infinitesimal fields to be used later (2.14).

To enable the use of linear stability theory, we will assume that there exists a steady
state

[
ρ0(x) uT

0 (x)
]T, with ∇ · u0 = 0, such that

N
([
ρ0(x)
u0(x)

])
=

 −u0 · ∇ρ0 + ∇
2ρ0

Re Pr

−u0 · ∇u0 −∇p0 + ∇
2u0

Re
+ ρ0g

= 0. (2.12)

Next, we suppose that ρ ′(x, t), u′(x, t) := [u′(x, t) v′(x, t) w′(x, t)
]T, and p′(x, t) are

infinitesimal complex-valued perturbations in density, velocity and pressure from the
steady-state solution. The linearisation of (2.10) about

[
ρ0(x) uT

0 (x)
]T is then given

by the linear operator L and the associated partial differential equation

∂

∂t

[
ρ ′

u′
]
=L

[
ρ ′

u′
]
:=

 −u0 · ∇ρ ′ − u′ · ∇ρ0 + ∇
2ρ ′

Re Pr

−u0 · ∇u′ − u′ · ∇u0 −∇p′ + ∇
2u′

Re
+ ρ ′g

 , (2.13)

subject to ∇ ·u′=0. The boundary conditions for (2.13) are typically the homogeneous
versions of the conditions on N (2.10), since

[
ρ0 + ρ ′ (u0 + u′)T

]T must satisfy the
same boundary conditions as

[
ρ0 uT

0

]T.
It is typically convenient to define an adjoint linear operator with respect to

some inner product, so as to enable the computation of various types of sensitivity.
For complex-valued density perturbations ρ ′, ρ̂ ′ and velocity perturbations u′,
û′ := [û′ v̂′ ŵ′

]T in some control volume Ω , along with the complex conjugation
operation (·̄), we choose the inner product〈[

ρ ′

u′
]
,

[
ρ̂ ′

û′
]〉
:=
∫
Ω

(ρ ′ ¯̂ρ ′ + u′ · ¯̂u′) dV. (2.14)

We remark that the weighting of the density and velocity terms in the above integral is
arbitrary. Nevertheless, we do not introduce any additional weighting, for convenience.

The adjoint linear operator L∗ is then defined as the operator – with an appropriate
set of boundary conditions – that satisfies〈

L
[
ρ ′

u′
]
,

[
ρ̂ ′

û′
]〉
=
〈[
ρ ′

u′
]
,L∗

[
ρ̂ ′

û′
]〉

. (2.15)

For ρ̂ ′, û′ and the adjoint linearised pressure p̂′, this adjoint operator is given by

L∗
[
ρ̂ ′

û′
]
=

 u0 · ∇ρ̂ ′ + ∇
2ρ̂ ′

Re Pr
+ g · û′

−ρ̂ ′∇ρ0 − (∇u0) · û′ + u0 · ∇û′ −∇p̂′ + ∇
2û′

Re

 , (2.16)
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subject to ∇ · û′ = 0 (see (21) in Ortiz et al. 2015). To clarify the notation, for two
vector fields u and v given respectively in indicial notation by ui and vi, ((∇u) · v)i=
(∂uj/∂xi)vj. Given

J := −(ρ ′ ¯̂ρ ′ + u′ · ¯̂u′)u0 − p′ ¯̂u′ + ¯̂p′u′

+ 1
Re

(
1

Pr

( ¯̂ρ ′∇ρ ′ − ρ ′∇ ¯̂ρ ′)+ (∇u′) · ¯̂u′ − (∇ ¯̂u′) · u′
)
, (2.17)

and the outward normal vector n on the boundary ∂Ω of the control volume Ω , the
boundary condition on ∂Ω associated with L∗ is

J · n= 0. (2.18)

The associated adjoint linearised Boussinesq equations are simply

∂

∂t

[
ρ̂ ′

û′
]
=L∗

[
ρ̂ ′

û′
]
. (2.19)

The adjoint is commonly derived using a bilinear concomitant (see Schmid &
Henningson 2001; Giannetti & Luchini 2007), but it can be verified perhaps more
intuitively from (2.15) itself. In summary, it can be shown that(

L
[
ρ ′

u′
])
·
[
ρ̂ ′

û′
]
=
[
ρ ′

u′
]
·L∗

[
ρ̂ ′

û′
]
+∇ · J. (2.20)

Integrating (2.20) over Ω and applying the divergence theorem, we find that〈
L
[
ρ ′

u′
]
,

[
ρ̂ ′

û′
]〉
=
〈[
ρ ′

u′
]
,L∗

[
ρ̂ ′

û′
]〉
+
∮
∂Ω

J · n dS. (2.21)

Hence, (2.16) and (2.18) are sufficient conditions for the adjoint relation (2.15) to be
satisfied.

2.2. Sensitivity to base flow modifications
The crux of linear stability theory is that the eigendecomposition of the linearised
dynamics (2.13) reveals the stability characteristics of the steady-state flow. The
Hartman–Grobman theorem states that the nonlinear (2.10) and linearised (2.13)
dynamics will have the same stability at the fixed point

[
ρ0 uT

0

]T, so long as none
of the eigenvalues have a zero real part. We remind that the theorem makes no
implications about the size of the domain of attraction in the nonlinear dynamics,
nor does the linear stability analysis necessarily reveal finite-time transient growths
stemming from the non-normality of L. The topics of nonlinear and non-normal
stability are discussed in works by Schmid & Henningson (2001), Chomaz (2005)
and Schmid & Brandt (2014), among others.

The sensitivity of the stability to base flow modifications, as presented by
Marquet et al. (2008), provides an elegant closed-form solution for the eigenvalue
perturbation resulting from an infinitesimal base flow perturbation. The direct and
adjoint eigenmodes can be combined to construct a sensitivity field, which yields the
eigenvalue perturbation via an inner product with the base flow perturbation. Whereas
Marquet et al. presented the theory for constant-density flows, we now expand this
theory to the Boussinesq equations, for which we assume that the density field is not
constant, but is still close to a characteristic value. We will see that certain terms
from Marquet et al.’s theory will remain, but additional terms stemming from the
density field will appear as well.
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1154 K. K. Chen and G. R. Spedding

In our notation, we will express the direct and adjoint eigendecompositions
respectively as

Lφ = λφ, (2.22a)
L∗ψ = λ̄ψ . (2.22b)

The direct and adjoint eigenmodes are respectively

φ =
[
φρ
φu

]
, ψ =

[
ψρ
ψu

]
, (2.23a,b)

with the ρ subscript indicating the density component and the u subscript indicating
the velocity component. Note that based on the definitions of the linear operators,
∇ · φu = ∇ · ψu = 0. As usual, the eigenvalues λ are the complex scalars that
satisfy (2.22); if φ is the initial condition to a linearised flow, then the solution of
the flow is given by eλtφ. Through our notation, we imply that the above equations
hold for all eigenvalue–eigenmode pairs, and we leave out eigenvalue–eigenmode
indices for brevity.

As in previous works (e.g. Giannetti & Luchini 2007), the sensitivity analysis
essentially computes what eigenvalue perturbation δλ would result from an infinites-
imal perturbation in the linearised dynamics δL. Without making any assumptions on
δL besides its infinitesimal scale, a perturbation in (2.22a) yields

δLφ +Lδφ = δλφ + λδφ. (2.24)

In this form, we have not set δL yet, so we cannot compute δφ at this point. We can
compute δλ without computing δφ, however, by taking the inner product of (2.24)
with ψ . Noting that

〈Lδφ,ψ〉 = 〈δφ,L∗ψ〉 = 〈δφ, λ̄ψ〉= 〈λδφ,ψ〉 , (2.25)

(2.24) conveniently reduces to 〈δLφ,ψ〉 = 〈δλφ,ψ〉, that is,

δλ= 〈δLφ,ψ〉〈φ,ψ〉 . (2.26)

This equation forms the basis of stability sensitivity analyses; all that remains is to
choose δL.

In the spirit of Marquet et al. (2008), we will define δL to be the change in the
linearised dynamics resulting from an infinitesimal change in the base flow. We will
primarily consider two cases: a change in the base density field ρ0(x) with a fixed base
velocity field u0(x), and a change in u0(x) with a fixed ρ0(x). In § 2.3, we provide
some remarks that tie these two cases together.

In the former case, it is apparent from the linearised dynamics (2.13) that if the
base flow density changes infinitesimally from ρ0(x) to ρ0(x) + δρ0(x), then the
corresponding change in the linearised dynamics is

δL
[
ρ ′

u′
]
=
[−u′ · ∇δρ0

0

]
. (2.27)

Defining the inner product 〈
ρ ′, ρ̂ ′

〉 := ∫
Ω

ρ ′ ¯̂ρ ′ dV (2.28)
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for scalar fields, we follow (2.26) and find that the corresponding eigenvalue shift is

δλ=
〈−φu · ∇δρ0, ψρ

〉
〈φ,ψ〉 . (2.29)

It is more convenient and elegant to express the above as an inner product of some
quantity with δρ0, so as to clarify the relation between δρ0 and δλ. Using integration
by parts, we obtain

δλ = 1
〈φ,ψ〉

∫
Ω

−ψ̄ρφu · ∇δρ0 dV (2.30a)

= 1
〈φ,ψ〉

(∫
Ω

δρ0φu · ∇ψ̄ρ dV −
∮
∂Ω

δρ0ψ̄ρφu · n dS
)
, (2.30b)

where we have taken advantage of the fact that ∇ · φu = 0. Let us consider the
physically realistic case that δρ0 is real valued, and assume the boundary condition
that

δρ0ψ̄ρφu · n= 0 (2.31)

on ∂Ω . Then, we can define the partial sensitivity to base flow density modifications

∂λ

∂ρ0
:= φu · ∇ψ̄ρ
〈φ,ψ〉 , (2.32)

so that the eigenvalue shift is conveniently expressed as

δλ=
〈
∂λ

∂ρ0
, δρ0

〉
. (2.33)

We specifically denote (2.32) as a partial sensitivity, because we have assumed that
the base flow velocity field u0 is unchanged.

Next, we can perform the same analysis for the case where u0 undergoes an
infinitesimal shift δu0, but ρ0 remains unchanged. In this case, the corresponding
shift in the linearised dynamics (2.13) is

δL
[
ρ ′

u′
]
=
[ −δu0 · ∇ρ ′
−δu0 · ∇u′ − u′ · ∇δu0

]
. (2.34)

Following (2.26), the resulting eigenvalue shift is

δλ= 1
〈φ,ψ〉

∫
Ω

(−ψ̄ρδu0 · ∇φρ − (δu0 · ∇φu) · ψ̄u − (φu · ∇δu0) · ψ̄u
)

dV. (2.35)

Integration by parts on the last summand of the integrand yields∫
Ω

−(φu · ∇δu0) · ψ̄u dV =
∫
Ω

(φu · ∇ψ̄u) · δu0 dV −
∮
∂Ω

(δu0 · ψ̄u)(φu · n) dS, (2.36)

where we have once again used the fact that ∇ ·φu= 0. Combining (2.35) and (2.36),

δλ = 1
〈φ,ψ〉

(∫
Ω

(−ψ̄ρ∇φρ − (∇φu) · ψ̄u + φu · ∇ψ̄u
) · δu0 dV

−
∮
∂Ω

(δu0 · ψ̄u)(φu · n) dS
)
. (2.37)

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.847
Downloaded from https:/www.cambridge.org/core. USC - Norris Medical Library, on 19 Jan 2017 at 13:55:18, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.847
https:/www.cambridge.org/core


1156 K. K. Chen and G. R. Spedding

Thus, if we assume that δu0 is real valued and that the boundary condition

(δu0 · ψ̄u)(φu · n)= 0 (2.38)

is satisfied on ∂Ω , then we can define the partial sensitivity to base flow velocity
modifications

∂λ

∂u0
:= −ψ̄ρ∇φρ − (∇φu) · ψ̄u + φu · ∇ψ̄u

〈φ,ψ〉 . (2.39)

With this expression, we can employ the velocity inner product〈
u′, û′

〉 := ∫
Ω

u′ · ¯̂u′ dV (2.40)

to express the eigenvalue shift conveniently as

δλ=
〈
∂λ

∂u0
, δu0

〉
. (2.41)

We note that the latter two summands in the numerator of (2.39) also appear in the
constant-density base flow sensitivity (Marquet et al. 2008), but the first summand
appears specifically because of the density-varying nature of the dynamics in question.

As in Marquet et al. (2008), we can follow through the derivations of the partial
sensitivities and determine the origins of each of the additive terms. These origins
reveal the physical mechanisms underlying the partial sensitivities. First, the partial
sensitivity to base flow density modifications ∂λ/∂ρ0 (2.32) is ultimately derived from
the −u′ · ∇δρ0 term in the density component of the operator perturbation δL (2.27).
Thus, it represents the production of density perturbations by δρ0.

Next, we can see that in the partial sensitivity to base flow velocity modifications
(2.39), the additive term −ψ̄ρ∇φρ/ 〈φ,ψ〉 is derived from −δu0 · ∇ρ ′ in the density
component of δL (2.34). Thus, it represents the transport of density perturbations by
δu0, which we denote by (

∂λ

∂u0

)
ρ,t

:=− ψ̄ρ∇φρ〈φ,ψ〉 . (2.42)

By the same mechanism as Marquet et al. (2008), the terms −(∇φu) · ψ̄u/ 〈φ,ψ〉 and
φu · ∇ψ̄u/ 〈φ,ψ〉 in (2.39) are respectively derived from −δu0 · ∇u′ and −u′ · ∇δu0
in (2.34). Therefore, they respectively represent the transport and production of
velocity perturbations by δu0, which we denote by(

∂λ

∂u0

)
u,t
:=− (∇φu) · ψ̄u

〈φ,ψ〉 , (2.43a)(
∂λ

∂u0

)
u,p
:= φu · ∇ψ̄u

〈φ,ψ〉 . (2.43b)

These transport and production terms can be interpreted respectively as global
analogues of convective and absolute instabilities (Marquet et al. 2008). All the
terms arising from transport and production mechanisms are summarised in table 1.
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TABLE 1. The additive terms in the partial sensitivities.

2.3. Remarks on total sensitivity
The partial sensitivity analysis in the prior section is most useful for understanding
the effects of base flow density and velocity modifications, individually, on the
flow stability. Conceptually, it is reasonable to imagine that the density and velocity
modifications should be linked in practice. For instance, we may wish to determine
to the change in the stability of a stratified bluff-body wake as the Froude number
changes from Fr to some Fr + δFr. In this case, both ρ0 and u0 would be expected
to change.

If ρ0 and u0 change together, the shift in the linearised dynamics would be given
by the sum of the right-hand sides of (2.27) and (2.34), that is,

δL
[
ρ ′

u′
]
=
[−δu0 · ∇ρ ′ − u′ · ∇δρ0
−δu0 · ∇u′ − u′ · ∇δu0

]
. (2.44)

It then follows that the eigenvalue perturbation is

δλ=
〈
∂λ

∂ρ0
, δρ0

〉
+
〈
∂λ

∂u0
, δu0

〉
, (2.45)

which is in line with our interpretation of the partial sensitivities as partial derivatives.
If we are further able to express the base flow velocity modification δu0 in terms

of the base flow density modification δρ0 via the Jacobian equation

δu0 = ∂u0

∂ρ0
δρ0, (2.46)

then (2.45) becomes

δλ =
〈
∂λ

∂ρ0
, δρ0

〉
+
〈
∂λ

∂u0
,
∂u0

∂ρ0
δρ0

〉
(2.47a)

=
〈
∂λ

∂ρ0
, δρ0

〉
+
∫
Ω

∂λ

∂u0
· ∂u0

∂ρ0
δρ0 dV (2.47b)

=
〈
∂λ

∂ρ0
, δρ0

〉
+
〈
∂λ

∂u0
· ∂u0

∂ρ0
, δρ0

〉
. (2.47c)
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Hence, if we define the total sensitivity to base flow density modifications

dλ
dρ0
:= ∂λ

∂ρ0
+ ∂λ

∂u0
· ∂u0

∂ρ0
, (2.48)

then the eigenvalue perturbation from both δρ0, as well as δu0 induced by δρ0, is
expressed conveniently as

δλ=
〈

dλ
dρ0

, δρ0

〉
. (2.49)

The difficulty in utilising the total sensitivity (2.48) is that the Jacobian ∂u0/∂ρ0
is numerically very large and difficult to compute in its explicit form. In discretised
space, its size would typically be the number of spatial dimensions times the square
of the number of grid points or cells. Therefore, (2.48) is unlikely to be a tractable
computation for two- or three-dimensional flows. For this reason, we will not pursue
the total sensitivity in this manuscript besides to state it here, and we will base our
analyses on the partial sensitivities instead. Should there exist an efficient computation
of the total sensitivity, however, it would provide a valuable extension to the results
presented in this manuscript.

3. Example: stably density-stratified flow around a bluff body
3.1. Base flow and global modes

For the remainder of the manuscript, we discuss the Re= 30 flow around a thin plate
at a 90◦ angle of attack. The plate is one non-dimensional unit high and 0.05 units
thick, and is centred in a 200 × 200 finite volume domain. An exception is made
for the unstratified flow, for which the plate is centred in a domain that is 200 units
wide and 30 units high. The full details of the computational methods are given in
appendix A. We choose Re = 30 because it is close to the critical value of 35 at
which a supercritical Hopf bifurcation occurs for Fr = ∞, as will be evident later.
A Prandtl number of Pr= 7.19 is chosen to match values approximately expected in
oceanographic flows. The exact value of Pr is not expected to make a large difference
in our results (de Stadler et al. 2010).

The base flows at Fr = 1, 8, and ∞ are shown respectively in figures 1–3. The
expected features can be seen in these figures. Most notably, lee waves can be seen
in the stratified flows. Given a lengthy set of assumptions – that the stratified flow is
two-dimensional, incompressible, steady and inviscid; that the upstream density and
velocity are functions of only y; that there is no flow reversal; and that the Froude
number is constant in the flow – the displacement η of streamlines in lee waves is
given by

∇2η+ η

Fr2 = 0 (3.1)

(Turner 1973, chap. 3.1). This essentially establishes that the lee wavelength is 2πFr.
At Fr = 1, the buoyancy effects are very strong, and notable lee waves of

wavelength 2π are seen to emanate from the bluff body. Although the inertial effects
of the flow are too large to support the complete blocking of the upstream flow
by the bluff body (Yih 1969), a significant upstream wake is nonetheless apparent.
Furthermore, the recirculation region is shorter than in the Fr=∞ case, since the fluid
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(a) (b)

FIGURE 2. (Colour online) The stratified flow at Fr= 8; see the caption of figure 1.

FIGURE 3. (Colour online) The unstratified flow from left to right around a vertical thin
plate (green), at Re= 30.

that is vertically deflected around the bluff body experiences a large restoring force
back to the centre line. In the Fr = 8 case, the lee waves have a larger wavelength
of approximately 16π, and these waves are weaker in magnitude. In addition, the
recirculation is longer than in the Fr= 1 case because of the weaker buoyancy force.
Finally, no density variations or lee waves are present when Fr = ∞, as expected.
Some additional discussion on the lee wavelength is given in § A.4.

Next, we employ the Arnoldi iteration to compute the leading eigenvalues and
eigenmodes; see the extended discussion in § A.1 for numerical details. It is very
computationally expensive to resolve multiple eigenvalues and eigenmodes for these
open flows, since spatial effects extend to great distances, and buoyancy waves
pervade through the entire domain. Therefore, we only report on the most converged
eigenvalue and eigenmode for each Froude number. Based on the distribution of
Arnoldi eigenvalues at the conclusion of the iteration, it is likely that the modes we
report are in fact the least stable ones. The mode at Fr=∞ is in excellent agreement
with the least stable mode for the circular cylinder (e.g. Marquet et al. 2008), and
the mode at Fr = 1 is consistent with the long-time behaviour of direct numerical
simulations, as § 4.2 will show. As we will describe in more detail later, the mode
we analyse for each Froude number is not a continuation of other modes we report
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(a) (b)

FIGURE 4. (Colour online) The (a) direct and (b) adjoint velocity eigenmodes of the
Fr = ∞ flow, corresponding to the least stable eigenvalue λ = −0.012 + 0.642i; shown
as the pointwise magnitude and streamlines of (a) Re(φu) and (b) Re(ψu).

at other Froude numbers. Therefore, we do not imply that the modes represent the
same set of physics.

At Fr = ∞, the Arnoldi iteration gives good convergence toward the least stable
eigenvalue λ=−0.012± 0.642i and its complex conjugate. The corresponding direct
and adjoint eigenmodes are shown in figure 4. As we discuss in greater detail in
§ A.2.1, the density components of these modes is φρ = ψρ = 0, so the modes
are identical to the constant-density modes, even allowing for non-zero density
perturbations ρ ′ in the linearised equations. The eigenmodes of unstratified flows
around bluff bodies are well understood at this point and have been discussed in many
works (e.g. Giannetti & Luchini 2007). Figure 4 depicts the common features. The
direct eigenmode is localised in a long downstream region, with spatially oscillating
structures. On the other hand, the adjoint eigenmode is large immediately downstream
of the bluff body, but the remaining wake is actually upstream because of the reversed
base flow advection in (2.16).

In contrast, the eigenmodes contain remarkably different features at Fr = 1. For
this computation, the Arnoldi iteration resolves the eigenvalue λ = −0.001 ± 0.902i.
The direct eigenmode is shown in figure 5, and the corresponding adjoint eigenmode
is shown in figure 6. It is immediately apparent that large-scale structures (i.e. on
the scale of the entire numerical mesh) are dominant in figures 5(a) and 6(a). These
structures primarily consist of large vertical bands of density and vertical velocity; the
density and vertical velocity are horizontally out of phase by a quarter period. The
effects of the lee waves (figure 1) can also be seen in the direct eigenmodes. These
large-scale structures are further analysed from a parallel flow perspective in § 4.1.

A closer look at figures 5(b) and 6(b) reveals density and velocity structures
associated with the downstream wake of the bluff body. These structures, however,
are nowhere near as dominant as the downstream velocity structures for Fr = ∞.
In fact, the velocity streamlines of the direct and adjoint eigenmodes remain nearly
vertical in the upstream and downstream wakes of the bluff body. In contrast, the
eigenmode streamlines at Fr=∞ (figure 4) form closed loops on the length scale of
the bluff body.

Another important feature of the eigenmodes is the appearance of angled waves
emanating from the bluff body. In the direct eigenmode (figure 5a), an envelope
downstream of the bluff body initially opens at an angle of θ = 13◦ from the
horizontal direction. The angle increases to about 24◦ at a distance of approximately
x = 20 downstream of the body. Wave crests can be seen inside this envelope. The
envelope itself roughly demarcates the end of the lee waves in the base flow (figure 1).
The adjoint eigenmode (figure 6a) similarly contains an envelope – which is now
upstream because of the reversed base flow direction in (2.16) – but the wave crests
reside in the exterior of the envelope. This envelope initially opens at approximately
θ = 19◦ before expanding to approximately 28◦ further upstream.
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(a) (b)

FIGURE 5. (Colour online) The direct eigenmode at Fr=1 corresponding to λ=−0.001−
0.902i, shown as the real part of density (blue: Re(φρ) < 0; red: Re(φρ) > 0) and
streamlines of Re(φu). (a) The domain [−60, 60] × [−60, 60]; the right region rotates
clockwise. (b) The domain [−2, 14] × [−8, 8].

(a) (b)

FIGURE 6. (Colour online) The adjoint eigenmode at Fr = 1 corresponding to figure 5,
shown as the real part of density (blue: Re(ψρ) < 0; red: Re(ψρ) > 0) and streamlines of
Re(ψu). (a) The domain [−60, 60]× [−60, 60]; the right region rotates clockwise. (b) The
domain [−7, 2] × [−4.5, 4.5].

It is well known that in an inviscid Boussinesq flow with a mass source or force
oscillating at dimensional angular frequency ω̃ in an open domain, gravity waves are
emitted along beams at an angle of θ = cos−1(ω̃/Ñ) from the vertical (Voisin 1991;
see also § A.4). This particular eigenmode has an angular frequency of |Im(λ)|= 0.901
for a Brunt–Väisälä frequency of N = 1, with both quantities non-dimensionalised
by convective time. Thus, the corresponding angle of wave transmission is predicted
under this theory to be cos−1 0.901= 26◦. This angle is consistent with those observed
in the direct and adjoint eigenmodes beyond the immediate wakes of the bluff body.

We remark that the use of a finite domain with artificial boundary conditions
presents challenges in the determination of large-scale modal structures. In particular,
the finite domain necessarily implies that any continua of eigenvalues and eigenmodes
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FIGURE 7. (Colour online) The partial sensitivities of the least stable eigenvalue
λ = −0.012 + 0.642i of the Fr = ∞ flow, shown as pointwise vector magnitudes of
(a) Re(∂λ/∂u0) (streamlines enter the recirculation region), (b) Im(∂λ/∂u0) (streamlines
exit the recirculation region), and (c) the complex-valued ∂λ/∂u0 (with the recirculation
bubble shown).

would be represented discretely instead. This may imply, for instance, that the
horizontal wavelength is determined in part by the mesh size and the boundary
conditions at the inlet and outlet. Nevertheless, the eigenmodes depicted in figures 5
and 6 still contain important near-wake features associated with the bluff body. We
will see next that it is these wake features, and not the large-scale structures, that
end up being important in the sensitivity calculations.

3.2. Sensitivity
3.2.1. Fr=∞: unstratified flow

With the eigenmodes computed – noting that we have omitted the Fr = 8 case
for brevity – the partial sensitivities can now be computed. For Fr =∞, the partial
sensitivity to base flow velocity modifications ∂λ/∂u0 (2.39) is shown in figure 7.
Since ψρ = 0, the partial sensitivity to base flow density modifications is ∂λ/∂ρ0 = 0
(see (2.32)). That is, the introduction of infinitesimal variations in the base flow
density would have no first-order effects on the stability of this mode.

In addition, ∂λ/∂u0 can be compared directly to the equivalent sensitivity presented
in figure 7 of Marquet et al. (2008). Although our geometry is a transverse thin plate
instead of a cylinder and our Reynolds number is below critical, the features of
the sensitivity are essentially identical. The growth rate sensitivity (Re(∂λ/∂u0);
figure 7a) is largest in a horizontal band inside the recirculation region, and the
primary destabilising base flow modification is the addition of upstream velocity in
this region. The arrangement of the growth rate sensitivity streamlines indicates that
this destabilising perturbation would increase the strength of the vorticity shed from
the top and bottom surfaces of the plate.

On the other hand, the frequency sensitivity (Im(∂λ/∂u0); figure 7b) is large not
only in the recirculation region, but also in lobes above and below. At supercritical
Reynolds numbers, this eigenmode corresponds to vortex shedding; therefore, the
frequency sensitivity indicates that the addition of upstream velocity near the plate,
and downstream velocity in the near wake, would accelerate the rate of vortex
shedding. This is an intuitive result, since such a base flow velocity modification
would increase both the rate of vorticity production at the plate tips, as well as the
rate of vortex advection.
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FIGURE 8. (Colour online) The breakdown of Re(∂λ/∂u0) (figure 7a) into components at
Fr =∞, each shown as pointwise vector magnitudes and streamlines. (a) The transport
of velocity perturbations Re((∂λ/∂u0)u,t). (b) The production of velocity perturbations
Re((∂λ/∂u0)u,p). The streamlines are directed into the recirculation bubble.

The partial sensitivity to base flow velocity modifications can be decomposed into
components resulting from the transport and production of velocity perturbations by
δu0. Again, since φρ = ψρ = 0, the transport and production of density perturbations
are zero to first order (see table 1). The decomposition of the growth rate sensitivity
Re(∂λ/∂u0) is shown in figure 8 and can be compared to figure 8 of Marquet et al.
(2008). Once again, the features are largely identical. The transport component
is concentrated more upstream than the production component, and is smaller
in magnitude. Also, one set of Re((∂λ/∂u0)u,t) streamlines roughly matches the
recirculation streamlines.

Some minor differences between this case and the critical cylinder flow can
be seen. For instance, the transport component is comparatively larger and extends
further downstream than in the cylinder flow. This may be the effect of the subcritical
Reynolds number in our example, as opposed to the critical Reynolds number used
by Marquet et al. (2008). In parallel and weakly non-parallel flow theory, a lower
Reynolds number would generally cause the instability type to favour the convective
(i.e. transport) type over the absolute (i.e. production) type (see, e.g. Bagheri et al.
2009). The differences between our example and that of Marquet et al., however, are
minor compared to the difference between the behaviours at infinite and finite Froude
numbers.

3.2.2. Fr= 1: strong stratification
For the eigenvalue λ = −0.001 − 0.902i in the Fr = 1 flow, the partial sensitivity

to base flow velocity modifications is shown in figure 9(d–f ). We immediately notice
two ways in which the sensitivity to base flow velocity modifications differs from the
Fr=∞ case (figure 7). First, the sensitivity region is more concentrated near the top
and bottom tips of the plate when Fr = 1. In particular, figure 9(d) shows that it is
maximally destabilising to add a vertical component to the base flow there toward
the plate centre. An intuitive explanation of this effect is that the addition of such
a base flow perturbation would compress the recirculation bubble. Furthermore, the
buoyancy forces are particularly large in those two regions, since the flow there has
been deflected by a non-trivial vertical displacement. Therefore, a modification of the
base flow velocity there would make a large impact in the characteristics of the flow.
This modification is examined in § 4.2.

Second, the sensitivity is two to three orders of magnitude smaller. We note that
the normalised denominator 〈φ/‖φ‖,ψ/‖ψ‖〉 of the partial sensitivities is 0.0229 for
Fr=∞ and 0.683 for Fr= 1. Seeing from (2.26) that 〈φ,ψ〉−1 scales the eigenvalue
perturbation δλ for a given linearised flow operator perturbation δL – and using ‖φ‖
and ‖ψ‖ to scale the eigenmodes – it is evident that the global overlap between φ
and ψ causes λ to be less ‘mobile’ in the Fr = 1 case than when Fr =∞. For an
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FIGURE 9. (Colour online) The partial sensitivities of the Fr = 1 flow, for the least
stable eigenvalue λ = −0.001 − 0.902i. The sensitivities are shown as (a) Re(∂λ/∂ρ0),
(b) Im(∂λ/∂ρ0) and (c) |∂λ/∂ρ0|. Also shown are pointwise vector magnitudes of
(d) Re(∂λ/∂u0), (e) Im(∂λ/∂u0), and ( f ) the complex-valued ∂λ/∂u0. Streamlines enter
the recirculation region in (d,e). The recirculation region is shown in (a–c, f ).

inviscid uniform base flow in the limit of an infinite control volume, the behaviour of
〈φ,ψ〉 is examined in § 4.1.2.

We briefly comment that this eigenvalue mobility can be related to the non-
normality of the flow. The values of 〈φ/‖φ‖,ψ/‖ψ‖〉 indicate that the Fr=∞ flow
is more strongly non-normal than the Fr = 1 flow. Thus, we can expect that the
ε-pseudospectrum corresponding to λ (i.e. the values µ ∈C in the vicinity of λ such
that ‖(µ − L)−1‖ > ε−1) occupies a larger region of the complex plane. In essence,
λ is easier to move, requiring a smaller base flow modification, when Fr =∞ than
when Fr = 1. Trefethen et al. (1993) discuss the theory of non-normality in greater
detail.

We also note that the vector directions of Re(∂λ/∂u0) are approximately the same
between Fr = ∞ (figure 7a) and Fr = 1 (figure 9d). In both cases, the maximally
destabilising base flow modification involves injecting additional base flow into the
recirculation bubble. The vector directions corresponding to increasing or decreasing
frequency are also the same. Although figure 7(b) and figure 9(e) have reversed vector
directions of Im(∂λ/∂u0), the signs of Im(λ) are also reversed. Therefore, at Fr=1, an
upstream injection of velocity just downstream of the body, as well as a downstream
injection of velocity further downstream, would increase the frequency of the mode,
as with Fr=∞.

The partial sensitivity to base flow density modifications (2.32) is shown in
figure 9(a–c). We remind that this partial sensitivity is zero for the eigenmode
we study at Fr =∞. At Fr = 1, the key feature of ∂λ/∂ρ0 is that it primarily lies
upstream of the bluff body. This attribute is in stark contrast to constant-density
sensitivity analyses (e.g. Giannetti & Luchini 2007; Marquet et al. 2008), which
place the entirety of the sensitivity region downstream of bluff bodies. Whereas
the velocity component of the sensitivity is driven primarily by the recirculation

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.847
Downloaded from https:/www.cambridge.org/core. USC - Norris Medical Library, on 19 Jan 2017 at 13:55:18, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.847
https:/www.cambridge.org/core


Boussinesq global modes and stability sensitivity in stratified wakes 1165
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0.00156
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FIGURE 10. (Colour online) The breakdown of Re(∂λ/∂u0) (figure 9d) into various
components at Fr = 1, each shown as pointwise vector magnitudes and streamlines.
(a) The transport of density perturbations Re((∂λ/∂u0)ρ,t). (b) The transport of velocity
perturbations Re((∂λ/∂u0)u,t). (c) The production of velocity perturbations Re((∂λ/∂u0)u,p).
Streamlines are directed away from the centre horizontal line in (a) and into the
recirculation region in (b,c).

downstream of the body (e.g. as commented by Giannetti et al. 2010), the density
component is most affected by the upstream wake visible in figure 1. In § 4.2, we will
employ time-resolved simulations to explore the effect of both density and velocity
modifications on the linearised dynamics at Fr= 1.

As summarised in table 1, the partial sensitivities can be decomposed into four
different components. The partial sensitivity to base flow density modifications, as
just described, arises from the production of density perturbations by δρ0. The partial
sensitivity to base flow velocity modifications, however, can be decomposed into
three components shown in figure 10. The transport of density perturbations by
δu0 (figure 10a) is unique to varying density flows. Like the density production
mechanism, it acts in a region that extends upstream of the bluff body, though not to
the extent seen in figure 9(a). It also extends significantly further downstream than the
other three mechanisms. The upstream location of the two density-related components
does not come as a complete surprise, since density-stratified flows exhibit upstream
wakes (Yih 1969).

For Fr = 1, the transport and production of velocity perturbations by δu0
(figure 10b,c) can be compared directly with their analogous components at Fr =∞
(figure 8). Some notable differences are apparent. In the stratified flow, both
mechanisms act much closer to the bluff body – and specifically, closer to the
tips of the plate. Again, this feature can be attributed to the large buoyancy forces
at the plate tips, as well as the shorter recirculation bubble caused by the buoyancy
forces in the wake. In addition, the velocity transport is a somewhat more dominant
mechanism than the production.

3.2.3. Fr= 8: mild stratification
Next, we discuss the partial sensitivities for the eigenvalue λ=−0.003+ 0.039i in

the Fr=8 flow. The sensitivities are shown in figure 11. It is reasonable to hypothesise
that the sensitivity regions for the Fr = 8 flow would show an ‘in-between’ phase
between the unstratified and the Fr = 1 flows. To a limited extent, this conjecture is
true. For instance, the partial sensitivity to base flow density modifications (figure 11a–
c) shows that a mix of upstream and downstream changes in the base flow density can
influence the mode growth rate and frequency.
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FIGURE 11. (Colour online) The partial sensitivities of the Fr= 8 flow, for the eigenvalue
−0.003 + 0.039i. The sensitivities are shown as (a) Re(∂λ/∂ρ0), (b) Im(∂λ/∂ρ0) and
(c) |∂λ/∂ρ0|, as well as pointwise vector magnitudes of (d) Re(∂λ/∂u0), (e) Im(∂λ/∂u0),
( f ) the complex-valued ∂λ/∂u0. In (d,e), streamlines are directed toward the centre
horizontal line.

The partial sensitivity to base flow velocity modifications (figure 11d–f ) is largest
nearly exactly on the boundary of the recirculation region. The sensitivity region is
not as close to the bluff body as when Fr= 1. At the same time, it does not fill the
recirculation region or extend as far downstream as when Fr =∞. The growth rate
sensitivity (figure 11d) is only non-trivial along thin bands on the boundary of the
recirculation region. In contrast, for both the thin plate (figure 7a) and the circular
cylinder (Marquet et al. 2008), the unstratified growth rate exhibits the strongest
sensitivity near the centreline of the recirculation bubble, with smaller lobes away
from the centreline. The description of the frequency sensitivity is similar, except
that compared to Fr= 1, the sensitivity region extends further from the bluff body in
both the Fr = 8 flow (figure 11e) and the unstratified flow (figure 7b), as well as in
the unstratified circular cylinder flow (Marquet et al. 2008). A key difference is that
in the Fr= 8 flow, the frequency sensitivity is approximately one order of magnitude
smaller than the growth rate sensitivity. We note that the eigenvalue in question has
a small imaginary part compared to those examined for Fr= 1 and ∞.

The comparison among the Fr= 1, 8 and ∞ sensitivities, however, is an imperfect
one. For instance, figures 9(a) and 11(a) show that base flow density modifications
upstream of the bluff body have opposite growth rate effects between Fr = 1 and 8.
We stress that for our example, there is not a continuous morphing of ∂λ/∂u0 from
Fr =∞ to Fr = 1. In fact, neither a continuous morphing nor qualitatively identical
sensitivities should be expected. The three sets of eigenvalues and eigenmodes
analysed are not the same ones across Froude numbers, but are rather the most
numerically converged ones at each Fr (see § A.1). To observe the effect of the
Froude number on a particular eigenvalue, eigenmode or sensitivity, computations
would have to be run in much finer increments of Fr, which we do not attempt here.

Figure 12 shows the breakdown of the growth rate sensitivity Re(∂λ/∂u0) to base
flow velocity modifications, again following table 1. It is apparent that the contribution
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FIGURE 12. (Colour online) The breakdown of Re(∂λ/∂u0) (figure 11d) into various
components at Fr = 8, each shown as pointwise vector magnitudes and streamlines.
(a) The transport of density perturbations Re((∂λ/∂u0)ρ,t). (b) The transport of velocity
perturbations Re((∂λ/∂u0)u,t). (c) The production of velocity perturbations Re((∂λ/∂u0)u,p).
All streamlines are directed into the recirculation region.

Re((∂λ/∂u0)ρ,t) from the transport of density perturbations by δu0 (figure 12a)
dominates this growth rate sensitivity. The growth rate sensitivity Re(∂λ/∂ρ0) to
base flow density modifications (figure 11a) – corresponding to the production of
density perturbations by δρ0 – is also approximately an order of magnitude larger
than the components from the transport and production of velocity perturbations
by δu0 (figure 12b,c). These features are in contrast to the breakdown for Fr = 1
shown in figures 9(a) and 10, where all four components have similar magnitudes.
Since the production and transport of density perturbations are features unique to
density-varying flows, the growth rate sensitivities in this Fr = 8 case are actually
dominated by density effects.

It is difficult to provide a rigorous explanation for this difference. As stated above,
the eigenmode analysed for Fr = 8 is not equivalent to the one shown for Fr = 1.
Thus, the two modes exhibit different physics, and it is expected that their sensitivity
characteristics would not be identical. We comment, however, that some qualitative
similarities can also be found. For instance, the transport of velocity perturbations
(figures 10b and 12b) is concentrated in lobes protruding from the bluff body into
the recirculation region, whereas the production of velocity perturbations (figures 10c
and 12c) is concentrated at the tips of the plate. The general nature of the sensitivity
components cannot be described or derived simply, and merits further study.

4. Theory and numerical experiments on model systems
4.1. Predictions from parallel flow theory

In § 3.1, the direct and adjoint eigenmodes for the Fr=1 flow were depicted, and their
features were described. It was then shown in § 3.2 that the eigenvalue sensitivity
regions only occupied a small region local to the bluff body, as opposed to the
large-scale structures found in the eigenmodes. In this section, we use inviscid
and viscous parallel flow theory to explain some of these features. The main
objectives in this section are to show that the global eigenmodes are consistent
with predictions from canonical simplified representations, and to demonstrate in
§ 4.1.2 how the localised sensitivity structures arise from global eigenmode structures.
Since we are now working exclusively with a stratified flow, we will use the alternate
non-dimensionalisation of density (2.7), (2.8) that is more appropriate for stratified
flows.
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4.1.1. Inviscid uniform base flow
The large-scale structures found in the global eigenmodes (figures 5a and 6a) can

be explained by employing canonical simplifications. In the most straightforward case,
we make the assumption that the flow is inviscid, the bluff body is absent, and that the
base flow is given by u0 = ex, the unit normal vector in the x-direction. Defining the
base flow density ρ∆0(x)= c− y for some c and the density perturbation ρ ′∆(x, t) :=
ρ∆(x, t)− ρ∆0(x), the linearised dynamics is given by

0= ∂u′

∂x′
+ ∂v

′

∂y′
, (4.1a)

∂ρ ′∆
∂t
=−∂ρ

′
∆

∂x
+ v′, (4.1b)

∂u′

∂t
=−∂u′

∂x
− ∂p′

∂x
, (4.1c)

∂v′

∂t
=−∂v

′

∂x
− ∂p′

∂y
− ρ ′∆

Fr2 (4.1d)

(cf. (2.13)). These equations can be combined to form the single fourth-order equation((
∂

∂t
+ ∂

∂x

)2

∇2 + 1
Fr2

∂2

∂x2

)
ρ ′∆ = 0. (4.2)

Similarly defining the adjoint density perturbation ρ̂ ′∆, the adjoint linearised dynamics
is given by

0= ∂ û′

∂x′
+ ∂v̂

′

∂y′
, (4.3a)

∂ρ̂ ′∆
∂t
= ∂ρ̂

′
∆

∂x
− v̂′

Fr2 , (4.3b)

∂ û′

∂t
= ∂ û′

∂x
− ∂ p̂′

∂x
, (4.3c)

∂v̂′

∂t
= ρ̂ ′∆ +

∂v̂′

∂x
− ∂ p̂′

∂y
(4.3d)

(cf. (2.16)). These equations can also be combined to form the single fourth-order
equation ((

∂

∂t
− ∂

∂x

)2

∇2 + 1
Fr2

∂2

∂x2

)
ρ̂ ′∆ = 0. (4.4)

If we now assume that the density perturbation has the form

ρ ′∆(x, y, t)= ei(kxx+kyy−ωt) (4.5)

for wavenumbers kx, ky ∈ R and frequency ω ∈ C, then we obtain the dispersion
relation

(kx −ω)2(k2
x + k2

y)−
k2

x

Fr2 = 0. (4.6)
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FIGURE 13. (Colour online) The leading eigenvalues (blue dots) of (a) the direct
Orr–Sommerfeld equation (4.17) and (b) the adjoint equation (4.21), for the Fr = 1 flow
extracted from x = −10. The eigenvalues predicted by the inviscid uniform base flow
assumption (4.7) are shown as red ×, and the global eigenvalue is shown as a green
square.

An examination of the Fr = 1 direct and adjoint eigenmode under investigation
(figures 5a and 6a) reveals that this mode has a streamwise wavenumber of
approximately kx = −0.071. Furthermore, we will assume ky = 0 because the real
part of the mode is in phase with the imaginary part (not shown); thus, the vertical
dependence is assumed to be an artefact of the finite domain and not a wave. The
dispersion relation then yields

ω= kx ± Fr−1, (4.7)

which evaluates to 0.929 or −1.071, as shown in figure 13. Given the approximations
made in this analysis, the frequency ω = kx + Fr−1 = 0.929 is close to the complex
value ω= iλ= 0.902− 0.001i for the global eigenmode. The wave form of the density
perturbation (4.5) also yields

u′ =− iky(kx −ω)
kx

ρ ′, (4.8a)

v′ = i(kx −ω)ρ ′, (4.8b)

which for the parameters in question yield u′ = 0 and v′ = −iFr−1ρ ′. The global
eigenmode shown in figure 5(a) agrees closely with these relations.

Given (4.5), the adjoint perturbation must have the form

ρ̂ ′∆(x, y, t)= ei(kxx+kyy+ωt). (4.9)

This adjoint perturbation yields the same dispersion relation as the direct perturbation
(4.6), as well as

û′ =− iFr2ky(kx −ω)
kx

ρ̂ ′∆, (4.10a)

v̂′ = iFr2(kx −ω)ρ̂ ′∆. (4.10b)
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4.1.2. Sensitivity in an inviscid uniform base flow
Given the inviscid uniform base flow analysis in § 4.1.1, we now discuss the

disparity between the large-scale features found in the global eigenmodes (figures 5a
and 6a) and the purely local structures in the sensitivity (e.g. figure 9). To perform this
investigation, we compute the four transport and production mechanisms summarised
in table 1 with the assumptions that ky= ∂/∂y= 0, φρ =ψρ = eikxx and φu=

[
φu φv

]T

and ψu =
[
ψu ψv

]T are given by (4.8) and (4.10). Note that we automatically have
that φu =ψu = 0. Thus, defining V to be the volume of the domain, the denominator
in the sensitivity terms evaluates to

〈φ,ψ〉 =
∫
Ω

(φρψ̄ρ + φuψ̄u + φvψ̄v) dV (4.11a)

= (1+ Fr2(kx −ω)2)V (4.11b)
= 2V. (4.11c)

First, the partial sensitivity to base flow density modifications, which describes the
production of ρ ′ by δρ0, is

∂λ

∂ρ0
= 1
〈φ,ψ〉

(
φu
∂ψ̄ρ

∂x
+ φv ∂ψ̄ρ

∂y

)
(4.12a)

= 0. (4.12b)

Next, we examine the three components of the sensitivity to base flow velocity
modifications. The transport of ρ ′ by δu0 is described by the term

(
∂λ

∂u0

)
ρ,t

= − ψ̄ρ

〈φ,ψ〉


∂φρ

∂x
∂φρ

∂y

 (4.13a)

= − ikx

2V
ex; (4.13b)

the transport of u′ by δu0 is described by the term

(
∂λ

∂u0

)
u,t
= − 1
〈φ,ψ〉


∂φu

∂x
ψ̄u + ∂φv

∂x
ψ̄v

∂φu

∂y
ψ̄u + ∂φv

∂y
ψ̄v

 (4.14a)

= iFr2kx(kx −ω)2
2V

ex; (4.14b)

and the production of u′ by δu0 is described by the term

(
∂λ

∂u0

)
u,p
= 1
〈φ,ψ〉

φu
∂ψ̄u

∂x
+ φv ∂ψ̄u

∂y

φu
∂ψ̄v

∂x
+ φv ∂ψ̄v

∂y

 (4.15a)

= 0. (4.15b)
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Therefore, we conclude that the partial sensitivity to base flow density modifications
is always zero for the inviscid uniform base flow, and the partial sensitivity to base
flow velocity modifications approaches zero in the limit of an unbounded domain
(i.e. V → ∞). The non-zero sensitivities we actually observe (figures 9 and 11)
must arise from differences between the global eigenmodes and the simple form
φρ = ψρ = eikxx. Since these differences are primarily caused by the bluff body
(assuming that viscosity and diffusion are largely negligible away from the body),
the sensitivities are largest in a local region near the thin plate. Hence, the localised
sensitivity regions are able to arise from the global eigenmodes covering the entire
domain.

4.1.3. Orr–Sommerfeld analysis
The parallel flow analysis so far can be made more accurate by relaxing the

assumptions that the fluid is inviscid and that the base flow is uniform. By now
assuming that the base flow is merely parallel, we arrive at an Orr–Sommerfeld-type
analysis. The Orr–Sommerfeld equation, which is reviewed by Schmid & Henningson
(2001) and White (2005) for constant-density flows, can be expressed as an analogous
sixth-order ordinary differential equation for stratified flows (Koppel 1964; Maslowe
& Thompson 1971). For our analysis, we choose to keep density and the y-component
of velocity separate, so our equation is a set of ordinary differential equations that is
second order in density and fourth order in velocity.

The assumptions of this analysis are that the dynamics is governed by the linearised
Boussinesq equations (2.13); that the base flow is given by ρ0(y) and u0(y) =[
u0(y) 0

]T; and that for a streamwise wavenumber k, eigenvalue λ and amplitude
functions ρa(y) and ua(y) =

[
ua(y) va(y)

]T, the infinitesimal flow perturbation from
the base flow is [

ρ ′∆(x, t)
u′(x, t)

]
=
[
ρa(y)
ua(y)

]
eikx+λt. (4.16)

With these assumptions, the generalised eigendecomposition of the resulting linearised
dynamics is  Lρ −dρ0

dy
k2Fr−2 Lv

 [ρa
va

]
= λ

1 0

0
d2

dy2
− k2

 [ρa
va

]
, (4.17)

where

Lρ :=−iku0 + 1
Re Pr

(
d2

dy2
− k2

)
, (4.18a)

Lv := ik
(

d2u0

dy2
− u0

(
d2

dy2
− k2

))
+ 1

Re

(
d2

dy2
− k2

)2

. (4.18b)

The boundary conditions on ρ ′ and u′ (table 2 in § A.3) are equivalent to

dρa

dy
= dva

dy
= d2va

dy2
= 0 (4.19)

at the endpoints of y.
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Likewise, given ûa(y)=
[
ûa(y) v̂a(y)

]T and the form[
ρ̂ ′(x, t)
û′(x, t)

]
=
[
ρ̂a(y)
ûa(y)

]
eikx+λ̄t, (4.20)

the Orr–Sommerfeld-type generalised eigendecomposition for the adjoint linear
Boussinesq equations (2.16) is L∗ρ −Fr−2

k2 dρ0

dy
L∗v

 [ρ̂a
v̂a

]
= λ̄

1 0

0
d2

dy2
− k2

 [ρ̂a
v̂a

]
, (4.21)

where

L∗ρ := iku0 + 1
Re Pr

(
d2

dy2
− k2

)
, (4.22a)

L∗v := ik
(

2
du0

dy
d
dy
+ u0

(
d2

dy2
− k2

))
+ 1

Re

(
d2

dy2
− k2

)2

. (4.22b)

The boundary conditions on ρ̂ ′ and û′ (table 2) are equivalent to

dρ̂a

dy
= dv̂a

dy
= d2v̂a

dy2
= 0 (4.23)

at the endpoints of y. The derivation of these equations is given in appendix B. We
remark that since (4.21) is derived from the adjoint linearised Boussinesq equations
for the inner product over the full domain (2.14), it is also the adjoint of (4.17) for
the inner product over y that corresponds to (2.14).

To compute these eigendecompositions, we first extract the base flow along the line
x=−10, and assume that the flow is everywhere parallel with ρ0 and u0 given by this
profile. This base flow contains the transverse oscillations associated with the blocking
and lee waves, as visible in figure 1(a). As before, we estimate k = −0.071. Since
we wish to simulate an infinite domain, we compute pseudospectral differentiation
matrices using Hermite polynomials based on algorithms described by Weideman &
Reddy (2000). Employing 247 Hermite quadrature points, the differentiation matrices
allow us to represent (4.17) and (4.21) as generalised eigenvalue problems of size
494× 494.

The leading eigenvalues of (4.17) and (4.21) are shown in figure 13. The spectrum
of the direct equation (4.17) contains the eigenvalue λ=−0.000−0.907i. As expected,
the spectrum of the adjoint equation (4.21) contains the conjugate eigenvalue λ̄ =
−0.000+ 0.907i. Both of these eigenvalues are close to the value λ=−0.001− 0.902i
computed from the global flow field.

Also, figure 14 shows the eigenmodes corresponding to these eigenvalues, and
compares them with the profile of the global modes taken at x = −10. The global
modes are first normalised in the two-dimensional domain using the inner product
in (2.14), and the slice at x = −10 is taken; the Orr–Sommerfeld modes are then
scaled to match the global modes. Overall, we observe that the Orr–Sommerfeld
analysis is able to capture the nature of the global direct eigenmodes, including the
upstream waves associated with the blocking by the bluff body.
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FIGURE 14. (Colour online) The Orr–Sommerfeld eigenmode corresponding to (a,b) the
direct equation (4.17) and λ=−0.000− 0.907i, and (c,d) the adjoint equation (4.21) and
λ̄ = −0.000 + 0.907i: (a,c) depict the density component and (b,d) depict the y-velocity
component. Also shown are the profiles of the global modes (a,b) φ and (c,d) ψ along
the line x=−10.

The differences between the Orr–Sommerfeld eigenmodes and the global eigenmodes
are primarily a result of the different boundary conditions. The Hermite pseudospectral
method assumes that quantities converge to 0 at y→ ±∞, whereas we have only
employed homogeneous Neumann conditions in the global eigenmodes. In addition,
the agreement in the adjoint modes is not as good, because the relatively uniform
base flow is insufficient for predicting the upstream-travelling oblique waves caused
by the bluff body (figure 6a). Nevertheless, this test validates the large-scale global
mode structures shown in figures 5 and 6, as well as their corresponding eigenvalues.
In addition, we can further conclude that the sensitivities shown in § 3 must be the
result of local features not found in this parallel flow analysis.

4.2. Linearised simulations with modified base flow density
With the partial sensitivity theory developed in § 2.2, it is then natural to inquire
what effects certain base flow modifications δρ0 and δu0 would have on the linearised
dynamics (2.13). Namely, if a certain δρ0 or δu0 is expected to destabilise the flow
by giving Re(δλ) > 0 via (2.33) or (2.41), we would like to see what the resulting
instability is. To that end, we perform time-resolved numerical experiments using the
linearised Boussinesq equations (2.13) with Fr = 1. The simulations start with initial
conditions ρ ′(x, 0) and u′(x, 0) randomised from a uniform distribution at every grid
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(a)

(b) (c)

FIGURE 15. (Colour online) A snapshot of a time-resolved linearised Boussinesq
simulation using a random initial condition. Shown as (a) ρ ′, (b) u′ and (c) v′. Red and
blue respectively indicate positive and negative values.

point. Although such a velocity perturbation field will have non-zero divergence, the
incompressible flow solver will ensure that u′(x, t) at all subsequent time steps will
be divergence free.

The density and velocity perturbation fields at t = 835.65 is shown in figure 15.
It is evident, for instance, that figure 15(a) contains the same downstream density
wake structure as the eigenmode shown in figure 5(b). On the other hand, figure 15(c)
shows that u′ consists primarily of vertical motions, as the eigenmode also exhibits
in figure 5(b). Some velocity distortions are also apparent immediately downstream of
the plate. Whereas figure 15(c) shows that the mode streamlines are primarily oriented
upwards, figure 15(b) shows that downstream of the plate, the streamlines deflect to
the right near the bottom, and to the left near the top. This, again, is in agreement with
the global eigenmode in figure 5(b). Such a resemblance between the time-resolved
flow and the eigenmode does not come as a surprise, since this eigenmode is one of
the least stable ones present for this base flow.

To investigate the partial sensitivity to base flow density modifications, we
next run a simulation with the base flow density perturbed to ρ0 + δρ0, where
δρ0 = 500Re(dλ/dρ0). Although the multiplicative coefficient may look large, we
remind that Re(dλ/dρ0) is very small to begin with; see figure 9. The size of δρ0
may be prohibitively large to prevent an accurate analysis as an infinitesimal base
flow modification, but we choose this size for the ease of visual comparison to the
unmodified base flow. For this experiment, the base flow velocity u0 and the initial
conditions ρ ′(x, 0) and u′(x, 0) remain unchanged.

Following the inner product equation relating δρ0 and δλ (2.33), we would expect
this base flow density perturbation to destabilise the flow. A snapshot of the linearised
flow at a large t is shown in figure 16. To highlight the slight destabilisation provided
by this base flow modification, we emphasise that ρ ′ is approximately an order of
magnitude larger in figure 16(a) than in figure 15(a). The primary effect of this δρ0
in ρ ′ is to create a slightly unstable upstream oscillation along the centreline. This
density wave prominently forms a few units upstream of the bluff body, propagates
toward the body, and is horizontally compressed and vertically stretched as it meets
the body. Part of the wave then climbs around the body and extends into the
recirculation region.

An effect of δρ0 can also be seen in u′ (figure 16b,c). In particular, figure 16(c)
shows the presence of a horizontal wave in v′ that is not present in the absence of

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.847
Downloaded from https:/www.cambridge.org/core. USC - Norris Medical Library, on 19 Jan 2017 at 13:55:18, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.847
https:/www.cambridge.org/core


Boussinesq global modes and stability sensitivity in stratified wakes 1175

(a)

(b) (c)

FIGURE 16. (Colour online) A snapshot of a time-resolved linearised Boussinesq
simulation using a random initial condition and a modified base flow density ρ0 + δρ0,
where δρ0 = 500Re(dλ/dρ0). Shown as (a) ρ ′ (with colours slightly exaggerated for
clarity), (b) u′ and (c) v′. Red and blue respectively indicate positive and negative values.

(a)

(b) (c)

FIGURE 17. (Colour online) A snapshot of a time-resolved linearised Boussinesq
simulation using a random initial condition and a modified base flow velocity u0 + δu0,
where δu0= 350Re(dλ/du0). Shown as (a) ρ ′, (b) u′, and (c) v′. Red and blue respectively
indicate positive and negative values.

δρ0 (figure 15c). This velocity wave begins just upstream of the body and extends
a few units downstream, and also propagates in the positive x direction. Since the
linearised velocity equation has not changed, the change in the behaviour of v′ must
be understood as an effect of ρ ′. Specifically, the linearised dynamics (2.13) reveals
that if ∇δρ0 points in the positive y direction – e.g. upstream of the plate as in
figure 9(a) – then a region with v′< 0 would see an increase in dρ ′/dt via the density
equation. The density perturbation ρ ′ is then coupled back to v′ via the momentum
equation, such that an increase in ρ ′ would cause a decrease in dv′/dt though the
gravity term.

Figure 17 is a snapshot of the linearised simulation with the unperturbed
base flow density ρ0, but with a modified base flow velocity u0 + δu0, where
δu0 = 350Re(dλ/du0). Once again, the initial conditions ρ ′(x, 0) and u′(x, 0) are
unchanged. Since the growth rate sensitivity Re(dλ/du0) only begins just upstream
of the bluff body and primarily extends downstream (figure 9d), δu0 has little
effect on the linearised dynamics upstream of the body. The velocity perturbation,
however, compresses the recirculation bubble in both the horizontal and the vertical
directions. The primarily vertical orientation of u′ is in rough agreement with the
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eigenmode shown in figure 5. As in the simulation with the modified base flow density
(figure 16), however, this base flow velocity modification once again introduces waves
that are coupled primarily between ρ ′ and v′. The precise mechanisms by which δu0
modifies the linearised dynamics are difficult to analyse because of the varying vector
directions of Re(dλ/du0), as well as the three different terms through which δL
depends on δu0 (2.34).

It is important to note that in these numerical experiments, a base flow modification
would not only modify the eigenmode φ in question to φ + δφ (see (2.24)), but
it would also stabilise or destabilise other eigenmodes. In the direct numerical
simulations as they are, it is not possible to determine how much each eigenvalue
and eigenmode shift is responsible for the altered dynamics in figures 16 and 17,
especially since the base flow modification had to be large for the effects to be
clearly visible. The distinction between these effects can be pursued further in future
research.

5. Conclusion

For the Boussinesq equations, we have proposed a variation of the sensitivity to
base flow modifications, as introduced by Hill (1992) and Marquet et al. (2008)
for constant-density flows. This theory, which is based on global direct and adjoint
eigenmodes, yields partial sensitivities that reveal how infinitesimal perturbations in
the base flow density or velocity field would affect the growth rate or the frequency
of a given eigenmode. The partial sensitivities are essentially kernels that yield the
stability eigenvalue perturbation when the base flow density or velocity perturbation
is suitably integrated over the entire domain. Currently, the sensitivity theory requires
base flow density and velocity modifications to be considered separately. The effects
of each modification on the eigenvalue can then be summed. We also proposed a total
sensitivity that would simultaneously consider both a base flow density modification,
as well as the base flow velocity modification that would result from that density
modification. The computation of the total sensitivity as proposed, however, is
prohibitively expensive.

We demonstrate the sensitivity theory on the two-dimensional stably linearly
density-stratified flow around a thin plate at a 90◦ angle of attack, at Re = 30 and
Pr = 7.19, and with Fr = 1, 8 and ∞. The stratified base flows show prominent lee
waves, especially at Fr = 1. Furthermore, the global direct and adjoint eigenmodes
consist of body-local features superimposed with large-scale undulations occupying
the entire domain. The large-scale undulations are predicted by an inviscid theory
assuming a uniform base flow, and finer details of the undulations are predicted by
an Orr–Sommerfeld-type analysis.

The sensitivity regions of this flow are local to the body, despite the occupation
of the global modes throughout the entire domain. This locality is also predicted
by the inviscid uniform base flow theory. The unstratified flow exhibits zero partial
sensitivity to base flow density modifications, and a partial sensitivity to base flow
velocity modifications primarily in the recirculation region. In contrast, the stratified
flows exhibit a partial sensitivity to base flow density modifications both upstream of
the bluff body and around the recirculation region. The upstream density sensitivity
is particularly prominent when Fr= 1, where stratification effects create a noticeable
upstream wake. In addition, lower Froude numbers cause the partial sensitivity to base
flow velocity modifications to shift closer to the tips of the plate, where buoyancy
effects are expected to be large because of the vertical deflection caused by the plate.
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Finally, we demonstrate the destabilising base flow modifications predicted by the
sensitivity theory. We employ time-resolved simulations of the linearised Boussinesq
equations with random initial conditions, where the base flow has been perturbed
by the partial sensitivities. These simulations reveal coupled density and vertical
velocity waves that originate where the base flow is perturbed, and subsequently
travel downstream. In these simulations, these waves are very slightly unstable,
but the degree of instability can be controlled by the magnitude of the base flow
modification.

We close with some remarks on proposed future research. First, one of the
limitations of our numerical example is that we are only able to analyse one of
what may be a continuum of eigenvalues and eigenmodes. As such, we are only
able to analyse the effect of a base flow modification on that single mode, and not
all other modes. To obtain a complete picture of the interplay between base flow
modifications and the entire set of linear dynamics, it would be necessary to develop
a new framework that relates such modifications with a large subset of eigenvalues
and eigenmodes in a tractable way. This framework would be particularly pertinent for
stratified flows, for which § 4.1 suggests the existence of a continuum of eigenvalues
and eigenmodes.

Second, the Reynolds number, Prandtl number and flow configuration in § 3 were
selected largely for the ease of analysis of the sensitivity theory. As such, they
are not necessarily reflective of conditions found in oceanographic or atmospheric
flows. For oceanographic flows, a more realistic analysis would have to include mass
diffusion and Coriolis forces. It would also have to pay particular attention to Re� 1,
as well as the full range of Froude numbers, including both Fr � 1 and Fr � 1
(Spedding 2014).

Third, although our numerical example focuses nearly exclusively on density
stratification and its effects on the flow physics, the variant of the sensitivity theory
that we propose actually applies quite broadly to the general Boussinesq equations.
Therefore, this theory should be applicable to flows beyond oceanographic and
atmospheric applications, where density effects are not necessarily associated with
the existence of a background stratification.

Fourth, we have begun preliminary work on the development of a sensitivity theory
for general incompressible density-varying flows, without invoking the Boussinesq
assumption that density variations are small. Although the theory is far more
sophisticated, it appears to be viable. We propose that an engaging avenue of future
research would be to compare the sensitivities derived from the Boussinesq and
non-Boussinesq equations, so as to assess the validity of the Boussinesq assumption
in flows across various applications. This comparison could be especially useful in the
study of baroclinic instabilities, since the Boussinesq and non-Boussinesq equations
have different mechanisms for generating baroclinic torque.

Finally, it is our hope that this merger of sensitivity theory and stratified flow
physics would shed new light on a wide array of topics, from stratified vortex
instability, perhaps even eventually to the control of stratified flow effects.
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Appendix A. Computational methods
In this appendix, we describe the details of the computational methods used to

compute the example in § 3. In § A.1, we explain the high-level algorithms used to
compute the steady-state solutions, eigendecompositions and sensitivities. We then
describe the flow solvers in § A.2, and the mesh and boundary conditions in § A.3.
Finally, we discuss the validation of our numerical methods in § A.4.

A.1. Steady-state solutions and eigendecompositions
As in previous sensitivity theories (e.g. Giannetti & Luchini 2007; Marquet
et al. 2008), the computation of the partial sensitivities is essentially a three-step
process. First, a steady-state solution

[
ρ0 uT

0

]T (2.12) needs to be solved given
the choice of Re, Pr, Fr and boundary conditions. Next, the direct and adjoint
eigendecompositions (2.22) need to be solved for the eigenvalues and eigenmodes
of interest. Finally, the partial sensitivities (2.32), (2.39) are computed from the
direct and adjoint eigenmodes. Since this final step is an explicit computation, it
is trivially easy compared to the first two steps. Therefore, it will not be discussed
further, besides to mention that the differentiation schemes used are the same as in
the steady-state solution and eigendecompositions.

There exist many methods for high-dimensional, nonlinear root finding. For our
example, it is simplest, easiest and most efficient simply to run a time-resolved flow
solver for a sufficiently long time. For these simulations, we set the initial condition
in the interior of the domain to be a uniform stratified flow matching the inflow
conditions. We terminate the simulations when the size of the time derivatives is very
small. Defining the norm∥∥∥∥[ρu

]∥∥∥∥ :=
√〈[

ρ
u

]
,

[
ρ

u

]〉
=
√∫

Ω

(
ρ2 + u · u) dV (A 1)

induced by the inner product (2.14) and defining V to be the volume of the domain,
we terminate the time-resolved flow solvers when the root-mean-square residual

r(t) := 1√
V

∥∥∥∥N ([
ρ(x, t)
u(x, t)

])∥∥∥∥ (A 2)

is r= 8.0× 10−5 for Fr= 1, r= 3.8× 10−7 for Fr= 8 and r= 8.9× 10−10 for Fr=∞.
These values are obtained at t= 1400 for Fr= 1, t= 6900 for Fr= 8 and t= 400 for
Fr=∞.

We also comment that there may exist other steady-state solutions which we do not
compute, and which are likely unstable. For the purposes of our examples, we only
focus on the solution obtained by the time-resolved flow solver.

After a steady-state solution has been found for a set of flow parameters, the
Arnoldi iteration (Trefethen & Bau 1997, chaps 33–34) is used with discrete-time
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analogues of L (2.13) and L∗ (2.16) to locate the least stable direct and adjoint
eigenvalues, along with their corresponding eigenmodes. This well-known method
examines the time evolution of a random initial condition through the linear operator
to extract such information.

The convergence of the Arnoldi iteration is very slow, which is likely because
the distribution of eigenvalues in the discrete-space formulation is fairly dense,
and the least stable eigenvalues of interest do not sufficiently protrude from the
remaining eigenvalues in the complex plane (Trefethen & Bau 1997, chap. 33). Such
a dense distribution of discrete-space eigenvalues should not come as a surprise. The
continuous-space spectra of canonical flows in open or partially open domains are
often known to contain dense regions in the complex plane (Schmid & Henningson
2001, chap. 3). The convergence of the Arnoldi iteration is particularly slow for low
Froude numbers. By monitoring the evolution of the randomised initial condition
under the action of L (2.13) or L∗ (2.16), it is evident that buoyancy effects cause
oscillations to persist for very long times and very large distances, which is consistent
with stratified flow theory.

A common remedy for slow Arnoldi eigendecomposition convergence is to employ
a shift-and-invert Arnoldi iteration. Even with this procedure, however, solving the
eigendecomposition can be very tedious and computationally expensive (see, e.g.
Barbagallo, Sipp & Schmid 2009). Therefore, we elect simply to run the Arnoldi
iteration to a very large final time. For Fr = 1 and 8, the linearised Boussinesq
equations (2.13) and the adjoint equations (2.19) are advanced by 4.86 convective
time units in each Arnoldi iteration. This is accomplished by running 360 flow solver
iterations with a time step of 1t=0.0135, for which the Courant number based on the
advection velocity u0 of u′ and û′ is fixed at approximately 0.67–0.75. In total, 3600
Arnoldi iterations are run for each eigendecomposition. For Fr = ∞, the procedure
is the same, but instead, each Arnoldi iteration runs 240 flow solver iterations to
advance 3.24 convective units, and 5400 Arnoldi iterations are run in total.

Each Arnoldi iteration produces one eigenvalue and eigenmode that is resolved
well, and some others with varying degrees of resolution. Since the time step in
each Arnoldi iteration is large, the eigenvalues reported are aliased. To de-alias the
eigenvalues, the Arnoldi iteration is also run with a smaller time step, and eigenvalues
are compared across the two cases. Although the small-time-step eigendecomposition
is not properly resolved, it is sufficient for adjusting the phase of the large-time-step
discrete-time eigenvalue by the correct factor of 2π.

We re-emphasise that the modes we analyse in this manuscript are likely but not
provably the least stable ones, nor are they continuations of each other with varying
Fr. Rather, they are the one for which the numerics are best resolved. Nevertheless,
we do not present eigenspectra for the different base flows, because the remaining
eigenvalues are not sufficiently resolved. In addition, although it is common to
compute the dependence of the critical Reynolds number for different parameters
(e.g. Froude number), such a computation is prohibitively expensive for the stratified
flow in question. Unlike unstratified flows, far-field effects for finite Froude number
can be extremely extensive.

A.2. Flow solvers
A.2.1. Governing equations

Since the example we pursue involves a density-stratified inflow, an alternate form
of the nonlinear (2.10) equations is used in the flow solvers. Greater numerical

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.847
Downloaded from https:/www.cambridge.org/core. USC - Norris Medical Library, on 19 Jan 2017 at 13:55:18, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.847
https:/www.cambridge.org/core


1180 K. K. Chen and G. R. Spedding

stability was achieved by separating out the linear density stratification

ρb(y)= b−1ρy (A 3)

from the density field – for some choice of 1ρ and b – and solving instead for the
density perturbation

ρ∗(x, t) := ρ(x, t)− ρb(y) (A 4)

from the background stratification. Assuming that g=−gey, with ey the unit vector in
the y-direction, the hydrostatic pressure

pb(y)= gy
(
1ρy

2
− b
)

(A 5)

is also subtracted from the pressure field to yield the pressure perturbation

p∗(x, t) := p(x, t)− pb(y). (A 6)

Therefore, the nonlinear partial differential equations that are numerically solved
are

∂

∂t

[
ρ∗

u

]
=

−u · ∇ρb − u · ∇ρ∗ + ∇
2ρ∗

Re Pr

−u · ∇u−∇p∗ + ∇
2u

Re
+ ρ∗g

 , (A 7)

subject to ∇ · u= 0. Defining the base flow density and pressure perturbations ρ∗0 , p∗0
from the background stratification by

ρ∗0 (x) := ρ0(x)− ρb(y), (A 8a)
p∗0(x) := p0(x)− pb(y), (A 8b)

the steady-state flow can be expressed by ρ∗0 (x) and u0(x) such that −u0 · ∇ρb − u0 · ∇ρ∗0 +
∇2ρ∗0
Re Pr

−u0 · ∇u0 −∇p∗0 +
∇2u0

Re
+ ρ∗0 g

= 0 (A 9)

and ∇ · u0 = 0.
We make three remarks. First, the choice of b is arbitrary, since ρ∗0 is unaffected by

b. Second, the linearised and adjoint linearised equations that are solved numerically
are the same as before (2.13), (2.16), (2.19), with the understanding that the base flow
density ρ0 is decomposed by (A 8a).

Third, for the Fr =∞ simulations, we employ constant-density solvers instead of
the Boussinesq solvers. That is, we first numerically solve

∂u
∂t
=−u · ∇u−∇p+ ∇

2u
Re

(A 10)
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subject to ∇ · u= 0, so as to obtain u0 such that

−u0 · ∇u0 −∇p0 + ∇
2u0

Re
= 0 (A 11)

and ∇ · u0 = 0. Then, we solve the eigendecompositions

−u0 · ∇φu − φu · ∇u0 −∇p′ + ∇
2φu

Re
= λφu, (A 12a)

−(∇u0) ·ψu + u0 · ∇ψu −∇p̂′ + ∇
2ψu

Re
= λ̄ψu, (A 12b)

subject to ∇ ·φu=∇ ·ψu= 0. The reason for this choice is that it produces essentially
the same converged eigenvalue as the Boussinesq solvers – differing only in the third
decimal place – but the corresponding eigenmodes are better resolved.

The omission of the density from the numerical solution is justified as follows. As
aforementioned, we treat the case of Fr =∞ as an absence of density stratification
rather than an absence of gravity. Therefore, the base flow density ρ0 is constant
throughout the domain. The eigendecomposition (2.22a) then reduces to −u0 · ∇φρ + ∇

2φρ

Re Pr

−u0 · ∇φu − φu · ∇u0 −∇p′ + ∇
2φu

Re
+ φρg

= λ [φρφu

]
, (A 13)

subject to ∇ · φu = 0. It is apparent that one class of eigenvalues and eigenmodes
is given by the combination of φρ = 0 and (A 12a). The corresponding adjoint mode
must then be given by (A 12b). This observation does not preclude the possibility of
another set of modes with non-trivial φρ . Nevertheless, the least stable mode recovered
by the Boussinesq solvers does in fact have φρ about six orders of magnitude smaller
than φu – that is, approximately zero. Therefore, we instead present the better-resolved
equivalent mode φu computed by the constant-density solver.

A.2.2. Numerical methods
For the steady-state solutions and eigendecompositions, the flow equations

corresponding to the nonlinear (A 7), linearised (2.13) and adjoint linearised (2.16),
(2.19) equations are solved using the pressure-implicit with splitting of operators
(PISO) method (Issa 1986; Issa, Gosman & Watkins 1986; Ferziger & Perić 2002).
Although there exist more accurate numerical methods, its accuracy is sufficient for
our example (see § A.4). The solvers are constructed in the finite volume framework
provided by OpenFOAM package (Weller et al. 1998). With our implementation of
the PISO method, each time step consists of a predictor step where the velocity field
is updated by the momentum equation, and two corrector steps where in each, the
pressure is solved and the velocity field is updated to maintain continuity.

All quantities are defined in cell centres, with velocity fluxes interpolated in face
centres. We use a second-order accurate upwind scheme to evaluate convective
derivatives, and a second-order accurate centred scheme to evaluate all other
derivatives. Experiments show that this selection is better able to prevent wave
reflections at boundaries than using only centred schemes. The time integration is
fully implicit and also second-order accurate. The numerical method maintains small
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(a) (b)

FIGURE 18. (Colour online) The finite volume mesh. (a) The full 200× 200 mesh, shown
five times coarser in each direction for clarity. (b) The mesh in the vicinity of the thin
plate (green), shown two times coarser in each direction.

continuity errors: the volume-averaged value of |∇ · u| over all cells is 1.0 × 10−12,
1.6× 10−13 and 5.5× 10−10 respectively for Fr= 1, 8 and ∞.

We also briefly remark that there are two common methods for computing the
adjoint linearised operator L∗ (2.16), which are discussed and examined by Chandler
et al. (2012). In summary, the discrete adjoint is obtained by computing the adjoint of
the numerical representation of L. The main advantages of this approach are that the
numerical adjoint is typically easier to compute, the resulting adjoint eigenvalues
are expected to match the direct eigenvalues, and the boundary conditions are
automatically accounted for.

In this manuscript, we choose to use the less common continuous adjoint, which
is obtained by discretising the analytical form of L∗ (2.16) and its boundary
conditions (2.18). This method is easier to implement in our software, and Chandler
et al. (2012) report a lower severity of artefactual oscillations at inlet boundaries.
Furthermore, the numerical accuracy of the continuous adjoint is sufficient for our
calculations. For the converged complex conjugate eigenmode pair, with modes
indexed by 0 and 1, the values of 〈φ0,ψ1〉 /(‖φ0‖‖ψ1‖) are 5.66× 10−4, 1.62× 10−4

and 1.41 × 10−6 respectively for Fr = 1, 8 and ∞. Furthermore, the magnitude
of the difference between the direct eigenvalue and the complex conjugate of the
corresponding adjoint eigenvalue is 1.53 × 10−3, 2.42 × 10−4 and 2.62 × 10−3

respectively for the same Froude numbers.

A.3. Mesh and boundary conditions
For Fr= 1 and 8, the two-dimensional numerical mesh is a very large square centred
at the thin plate. The plate occupies the domain [−0.025, 0.025] × [−0.5, 0.5].
The mesh, which covers the domain [−100, 100] × [−100, 100] and is shown in
figure 18(a), needs to be large to avoid boundary effects. Namely, the downstream
extent needs to be large to capture the nonlinear and linearised wake, and the
upstream extent needs to be large to capture the adjoint linearised wake. Furthermore,
the top and bottom extent needs to be large to capture the lee waves that emanate
from the plate (figure 1b), and propagate to very large distances (figure 1a).
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Equation Boundary
Plate Inlet Outlet Top/bottom

n · ∇ρ∗ = 0 ρ∗ = 0 n · ∇ρ∗ = 0 n · ∇ρ∗ = 0
Nonlinear u= 0 u= ex n · ∇u= 0 n · ∇u= 0

consistent consistent p∗ = 0 n · ∇p∗ = 0

n · ∇ρ ′ = 0 ρ ′ = 0 n · ∇ρ ′ = 0 n · ∇ρ ′ = 0
Linearised u′ = 0 u′ = 0 n · ∇u′ = 0 n · ∇u′ = 0

consistent consistent p′ = 0 n · ∇p′ = 0

n · ∇ρ̂ ′ = 0 ρ̂ ′ = 0 (u0 · n)ρ̂ ′ + n · ∇ρ̂ ′
Re Pr

= 0 (u0 · n)ρ̂ ′ + n · ∇ρ̂ ′
Re Pr

= 0

Adjoint û′ = 0 û′ = 0 (u0 · n)û′ + n · ∇û′

Re
= 0 (u0 · n)û′ + n · ∇û′

Re
= 0

consistent consistent p̂′ = 0 n · ∇p̂′ = 0

TABLE 2. Boundary conditions used in the stratified flow examples.

As shown in figure 18, the finite volume cells are fine near the plate and very coarse
near the boundaries. The mesh in the domain [−2, 5] × [−3, 3] is further refined
by a factor of two in each dimension to capture the plate and recirculation regions
more accurately (figure 18b). In addition, the cells adjacent to the plate are refined
yet again by a factor of two to enhance the accuracy of boundary effects. Excluding
these boundary cells, the finest cell has a dimension of 0.025, and the coarsest cell
has a dimension of 1.5. In total, the mesh is comprised of 386 520 cells.

The mesh for Fr = ∞ is essentially the same, except the domain covers
[−100, 100] × [−15, 15] instead, since lee waves are not present. This mesh has
220 176 cells.

The choice of boundary conditions for stratified flows is not an obvious one;
different conditions have been employed successfully by different researchers. After
experimenting with various sets of boundary conditions, we selected the one that
provides the greatest numerical stability and the smallest amount of lee wave
reflections, while still yielding correct physics. These boundary conditions are shown
in table 2. In this table, the unit normal vector in the x-direction is denoted ex.
Furthermore, the ‘consistent’ pressure boundary condition is the condition on n · ∇p∗,
n · ∇p′, or n · ∇p̂′ that is derived by taking the dot product of the corresponding
momentum equation (A 7), (2.13), (2.19) with n (Gresho & Sani 1987).

The boundary conditions in table 2 are explained as follows. For the nonlinear
Boussinesq equations, the density condition at the plate is derived by assuming a
linear relation between density and temperature, and assuming that the plate is a
thermal insulator. As usual, the no-slip condition applies. Next, the inlet flow is
assumed to be an undisturbed uniform stratified flow. At the outlet, top and bottom,
the boundaries are assumed to be far away enough that the flow is essentially uniform
in the normal directions. Although this is not analytically true, the associated errors
are kept to a minimum by keeping the boundaries very far from the bluff body of
interest. Finally, Gresho & Sani (1987) argue that it is best to apply the consistent
pressure conditions at all boundaries. We apply homogeneous Dirichlet and Neumann
conditions respectively at the outlet and the top/bottom, however, to improve the
numerical stability.
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(a) (b) (c)

FIGURE 19. (Colour online) Snapshots of the St Andrew’s Cross, shown as ρ∗ (blue:
ρ∗ < 0; red: ρ∗ > 0). The domain shown is [−15.8, 15.8] × [−15.8, 15.8]. (a) ω =√3/2
such that θ =π/6; (b) ω=√2/2 such that θ =π/4; (c) ω= 1/2 such that θ =π/3.

As aforementioned, the boundary conditions of the linearised equations are the
homogeneous versions of the nonlinear conditions. The treatment of the adjoint
linearised boundary conditions, however, is more difficult. Analytically, it is sufficient
to select conditions on ρ̂ ′, û′ and p̂′ such that (2.17), (2.18) are satisfied. It can be
verified that the plate, inlet and outlet conditions do in fact satisfy (2.17), (2.18).
The top and bottom conditions, however, slightly mismatch the analytical conditions.
Nevertheless, we make this selection to achieve better numerical stability, again with
the understanding that the top and bottom boundaries are very far from the bluff body.

A.4. Validation
To validate the nonlinear stratified flow solver, we perform three checks. These are
– in order – the application an oscillatory localised force, the wavelength of the lee
waves and the length of the recirculation bubble.

First, the analytical investigation by Voisin (1991) shows that when an oscillatory
point force is applied in an open stably linearly stratified medium, internal waves
are directed diagonally in a pattern known as the St Andrew’s Cross. Specifically,
suppose the dimensional angular speed of the oscillation is ω̃ and ω̃ < Ñ, where Ñ
is the Brunt–Väisälä frequency as before. Defining the non-dimensional angular speed
ω := ω̃/Ñ, the waves are oriented at an angle θ = cos−1(ω) from the vertical direction.
(Voisin assumed an exponential density stratification instead of a linear one, but the
differences here are minor.)

To simulate this experiment, we construct a numerical mesh covering [−200, 200]×
[−200, 200], with no solid boundaries. The mesh is constructed similarly to
figure 18(a), with finer cells near the origin; the mesh contains 213 444 cells.
Homogeneous Neumann conditions are applied to ρ∗, u and p∗ at all boundaries.
For t> 0, the Gaussian oscillatory forcing term

f (x, t)= e−‖x‖2/2√
2π

sin(ωt) (A 14)

is added to the right-hand side of the momentum equation in (A 7). The viscosity is
set so that the Womersley number is α = x̃c

√
ρ̃cω̃/µ̃ = 10, and Pr = 7.19. In this

experiment, the angle of the St Andrew’s Cross is expected to be θ =π/6, π/4, and
π/3 respectively for ω=√3/2,

√
2/2, and 1/2. Figure 19 verifies that the stratified

Boussinesq solver reproduces these angles.
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x-domain y-domain Cells Recirculation length

[−50, 50] [−50, 50] 48 926 1.094
[−50, 50] [−50, 50] 268 006 1.147
[−100, 100] [−100, 100] 386 520 1.145

TABLE 3. Recirculation lengths with Re= 30, Pr= 7.19 and Fr= 1, using
different meshes.

Second, we can verify the wavelength of lee waves against basic theory. As
discussed in § 3.1, the lee waves should have a wavelength equal to 2πFr. In our
base flows, we find that the lee wavelength is 2π · 1.00 for Fr = 1 (figure 1) and
2π · 8.75 for Fr= 8 (figure 2). The discrepancy in the latter figure may be because the
lee waves are large compared to the mesh boundaries. Regardless, the lee wavelengths
are in reasonably good agreement with the analytical theory.

Finally, as a test of sufficient mesh refinement, we compare the recirculation length
shown in figure 1 against that of two coarser meshes covering a smaller area. The
recirculation length is shown in table 3 and verifies that the current mesh (last row;
also figure 18) is sufficient for producing accurate results.

Appendix B. Derivation of the Orr–Sommerfeld-type equation
Inserting the wave form of the density and velocity perturbation (4.16) into the

linearised continuity and Boussinesq equations (2.13), and using the alternate non-
dimensionalisation for density (2.7), (2.8), we obtain

0= ikua + dva

dy
, (B 1a)

λρa =−iku0ρa − dρ0

dy
va + 1

Re Pr

(
d2

dy2
− k2

)
ρa, (B 1b)

λuaeikx+λt =
(
−iku0ua − du0

dy
va + 1

Re

(
d2

dy2
− k2

)
ua

)
eikx+λt − ∂p′

∂x
, (B 1c)

λvaeikx+λt =
(
−iku0va + 1

Re

(
d2

dy2
− k2

)
va − ρa

Fr2

)
eikx+λt − ∂p′

∂y
. (B 1d)

Subtracting the x-derivative of (B 1d) from the y-derivative of (B 1c) yields

λ

(
dua

dy
− ikva

)
= −ik

(
du0

dy
ua + u0

dua

dy

)
− d2u0

dy2
va − du0

dy
dva

dy
− k2u0v

+ 1
Re

(
d2

dy2
− k2

)(
dua

dy
− ikva

)
+ ikρa

Fr2 . (B 2)

Using (B 1a) to eliminate ua yields

iλ
k

(
d2

dy2
− k2

)
va =−d2u0

dy2
va + u0

(
d2

dy2
− k2

)
va + i

kRe

(
d2

dy2
− k2

)2

va + ikρa

Fr2 .

(B 3)

The combination of (B 1b) and the product of the above with −ik yields (4.17)
and (4.18).
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To derive the boundary conditions (4.19), we observe from table 2 that the top and
bottom conditions on ρ ′ and v′ immediately imply homogeneous Neumann conditions
on ρa and va. From (B 1a), we can then observe that the top and bottom conditions
on u′ are equivalent to d2va/dy2 = 0.

The derivation of the Orr–Sommerfeld-type equation for the adjoint linearised
Boussinesq equation (2.16) proceeds exactly analogously. Inserting the wave
form (4.20) into the continuity and momentum equations yields

0= ikûa + dv̂a

dy
, (B 4a)

λ̄ρ̂a = iku0ρ̂a + 1
Re Pr

(
d2

dy2
− k2

)
ρ̂a − v̂a

Fr2 , (B 4b)

λ̄ûaeikx+λ̄t =
(

iku0ûa + 1
Re

(
d2

dy2
− k2

)
ûa

)
eikx+λ̄t − ∂ p̂′

∂x
, (B 4c)

λ̄v̂aeikx+λ̄t =
(
−dρ0

dy
ρ̂a − du0

dy
ûa + iku0v̂a + 1

Re

(
d2

dy2
− k2

)
v̂a

)
eikx+λ̄t − ∂ p̂′

∂y
. (B 4d)

Subtracting the x-derivative of (B 4d) from the y-derivative of (B 4c) yields

λ̄

(
dûa

dy
− ikv̂a

)
= ik

(
2

du0

dy
ûa + u0

dûa

dy
+ dρ0

dy
ρ̂a

)
+ k2u0v̂a

+ 1
Re

(
d2

dy2
− k2

)(
dûa

dy
− ikv̂a

)
, (B 5)

and using (B 4a) to eliminate ûa yields

iλ̄
k

(
d2

dy2
− k2

)
va = −2

du0

dy
dv̂a

dy
− u0

(
d2

dy2
− k2

)
v̂a + ik

dρ0

dy
ρ̂a

+ i
kRe

(
d2

dy2
− k2

)2

v̂a. (B 6)

Finally, the combination of (B 4b) and the product of the above with −ik yields (4.21)
and (4.22).

In deriving the boundary conditions for (4.23), we recall that u0 · n = 0 at the
top and bottom boundaries. Therefore, for parallel base flows, the conditions for the
full adjoint linearised Boussinesq equations (table 2) are essentially of homogeneous
Neumann type on the top and bottom boundaries. As before, we recover homogeneous
Neumann conditions for ρ̂a and v̂a, and (B 4a) then implies d2v̂a/dy2 = 0.
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