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The mean velocity profile scaling and the vorticity structure of a stably stratified,
initially turbulent wake of a towed sphere are studied numerically using a high-
accuracy spectral multi-domain penalty method model. A detailed initialization
procedure allows a smooth, minimum-transient transition into the non-equilibrium
(NEQ) regime of wake evolution. A broad range of Reynolds numbers, Re = UD/ν ∈
[5 × 103, 105] and internal Froude numbers, Fr =2U/(ND) ∈ [4, 64] (U , D are
characteristic velocity and length scales, and N is the buoyancy frequency) is examined.
The maximum value of Re and the range of Fr values considered allow extrapolation
of the results to geophysical and naval applications.

At higher Re, the NEQ regime, where three-dimensional turbulence adjusts towards
a quasi-two-dimensional, buoyancy-dominated flow, lasts significantly longer than
at lower Re. At Re = 5 × 103, vertical fluid motions are rapidly suppressed, but
at Re = 105, secondary Kelvin–Helmholtz instabilities and ensuing turbulence are
clearly observed up to Nt ≈ 100. The secondary motions intensify with increasing
stratification strength and have significant vertical kinetic energy.

These results agree with existing scaling of buoyancy-driven shear on Re/Fr2 and
suggest that, in the field, the NEQ regime may last up to Nt ≈ 1000. At a given high Re

value, during the NEQ regime, the scale separation between Ozmidov and Kolmogorov
scale is independent of Fr . This first systematic numerical investigation of stratified
turbulence (as defined by Lilly, J. Atmos. Sci. vol. 40, 1983, p. 749), in a controlled
localized flow with turbulent initial conditions suggests that a reconsideration of the
commonly perceived life cycle of a stratified turbulent event may be in order for the
correct turbulence parametrizations of such flows in both geophysical and operational
contexts.
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1. Introduction
1.1. The importance of stably stratified wakes

Stably stratified turbulent wakes are fundamental fluid flows of relevance to
environmental and ocean engineering applications. Geophysical examples include
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the oceanic wakes of islands (Tomczak 1988), headlands (Pawlak et al. 2003)
and seamounts (Gibson, Nabatov & Ozmidov 1993) and the atmospheric wakes
of mountains (Rotunno, Grubisic & Smolarkiewicz 1999). Such wakes are potent
agents of across and along-isopycnal transport and mixing of energy, heat and
biogeochemical constituents not only near the wake source but also over significant
distances away from it. From an ocean engineering perspective, underwater vehicles
operate most efficiently in the pycnocline of the open or littoral ocean. The ambient
stratification, however, has a unique effect on the vehicle wake through the formation
of distinct late-time, large aspect ratio quasi-horizontal vortices (commonly known
as ‘pancakes’) (Lin & Pao 1979) and the radiation of internal waves both by
the vehicle and its turbulent wake. Thus, the wake may establish a distinct late-
time signature that may potentially be traced directly to the generating body.
Finally, a turbulent wake in a stably stratified fluid serves as an efficient template
for examining the fundamental physics of a localized turbulent event under the
competing influences of background shear and ambient stable stratification (Thorpe
2005).

1.2. The towed sphere stratified wake

1.2.1. Laboratory experiments

Motivated by its inherent simplicity, the wake of a sphere towed in a uniform
stratification has emerged as a convenient prototype to investigate the structure and
dynamics of stratified turbulent wakes. A review of research on stably stratified wakes
of a variety of bluff bodies (including momentumless self-propelled body wakes) prior
to 1980 may be found in the article by Lin & Pao (1979). A significant body of work
on the dynamics of stratified towed-sphere wakes has considered the near wake (Lin
et al. 1992; Chomaz, Bonetton & Hopfinger 1993b), the generation of lee-waves and
wake-emitted internal waves (Bonneton, Chomaz & Hopfinger 1993) and vertical
diffusion in the late wake (Chomaz et al. 1993a).

Systematic quantitative investigations of the stratified turbulent wake of a towed
sphere were performed by Spedding and co-workers (Spedding, Browand & Fincham
1996b; Spedding 1997, 2001, 2002, hereafter referred to as SBF96b, Sp97, Sp01 and
Sp02, respectively). Particle image velocimetry (PIV) was used to obtain accurate
two-dimensional measurements of the velocity field across horizontal and vertical
transects through the mid-to-late time wake. A broad range of internal Froude
numbers, Fr ≡ 2U/(ND) ∈ [4, 240], was considered, where U , D and N are the
tow speed, sphere diameter and stratification frequency, respectively. The maximum
body-based Reynolds number, Re = UD/ν, value attained in these experiments was
Re =2 × 104. For a minimum value of Re ≈ 5 × 103, scaling arguments (Spedding,
Browand & Fincham 1996a) and subsequent experiments (SBF96b) found that
the minimum Froude number value necessary to obtain a fully three-dimensional
turbulent near wake was equal to Fr ≈ 4, in agreement with the value proposed
by Chomaz et al. (1993b). For the above Fr range and values of Re exceeding the
indicated minimum, Sp97 demonstrated that all wakes have similar scaling behaviour.
The underlying cause for the similar scaling is that the decrease in local wake
velocities is accompanied by an increase in local length scales. As a result, a local
Froude number based on these scales will decrease until it becomes O(1). Thus, the
late stages of even a weakly stratified wake will eventually be fully controlled by
buoyancy.

On the basis of observations of the temporal variation of the exponents of the power
laws associated with the self-similar scaling of the mean defect velocity profile, Sp97
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identified three dynamical regimes in stratified wake evolution. At early times, three-
dimensional (3D) non-stratified turbulent axisymmetric wake structure and dynamics
govern the flow. The maximum defect velocity U0 decays with a U0 ∼ (Nt)−2/3 law,
whereas both the Gaussian half-width and height of the mean defect profile follow
an (Nt)1/3 growth rate. Experiments (Browand, Guyomar & Yoon 1987), numerical
simulations (Itsweire et al. 1993) and theoretical analyses (Gibson 1980; Riley &
Lelong 2000) of decaying stratified turbulent flows conducted prior to Sp97 indicate
that buoyancy forces begin to influence the larger scales of the flow at Nt ≈ 1. The
corresponding manifestation of the onset of buoyancy control in experiments on
stratified wakes of self-propelled slender bodies was a suspension of the growth of
the wake height at Nt = 2 (Lin & Pao 1979).

At Nt ≈ 2, the wake dynamics transition into the non-equilibrium (NEQ) regime
which is characterized by reduced decay rates of the horizontal mean velocity, with
U0 ∼ (Nt)−0.25. The laboratory investigations of Bonnier & Eiff (2002) also report an
increase in the defect velocity over the interval 2 � Nt � 7. Sp97 conjectured that this
deceleration of mean defect velocity decay can be attributed to the conversion of
available potential to kinetic energy near the wake centre through re-stratification
effects. The wake width continues to grow with an (Nt)1/3 ∼ (x/D)1/3 power law
(SBF96b; Sp97), exactly like its unstratified counterpart (Tennekes & Lumley 1972).
In contrast, the wake height remains approximately constant throughout NEQ and
was found to scale approximately with an empirically obtained Fr0.6 (Sp02). Two other
key features of NEQ are the gradual suppression of vertical velocities and transport
inside the wake core (Sp01) and the radiation of high-frequency internal waves from
the wake into the ambient. It is during the NEQ regime that coherent patches of
vertical vorticity (hereafter referred to as ‘pancake’ vortices) emerge, enlarging both
by merging and diffusion (Sp97).

A steeper decay rate of the mean defect velocity, with U0 ∼ (Nt)−0.76, is observed
at a transition time of Nt ≈ 50, leading into the quasi-two-dimensional regime (Q2D)
that persists for all measurable times up to Nt ≈ 2000 (Sp97). The (Nt)1/3 power
law continues to characterize wake-width growth. The wake height transitions into
a diffusively driven growth. Once the Q2D regime has been established, almost
all remaining kinetic energy in the flow resides within the field pancake vortices,
as vertical velocities are near-negligible. The flow field nonetheless is not purely
two-dimensional and the mean flow does not follow the decay laws of a two-
dimensional wake (Tennekes & Lumley 1972). Significant variability is observed
in the vertical. Vorticity fields indicate pairs of opposite-signed stable and highly
diffuse inclined vertical shear layers (Sp02). Each shear layer pair is inferred to be a
cross-section through a vertically coherent pancake eddy, with the maximum shear
occurring at the pancake edges. Viscous diffusion provides a means of vertical coupling
across shear layers and is responsible for their thickening and eventual merging.
Eventually, the vertical centreplane flow field is dominated by the mean wake defect,
as indicated by the establishment of two almost-horizontal layers of opposite-signed
vorticity.

1.2.2. Numerical simulations

The direct numerical simulations (DNS) of Gourlay et al. (2001) and large-eddy
simulations (LES) of Dommermuth et al. (2002), run at maximum Reynolds numbers
of Re = 104 and Re = 105, respectively, have also replicated the basic phenomenology
of the NEQ and Q2D regimes. However, the lack of agreement in vertical wake
length scale growth rates between experiments is also present in the numerical studies.
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Although both numerical investigations show a constant wake height upon the onset
of the NEQ regime, the scaling of the height as a function of Fr was never resolved
as each set of simulations was run for only a finite value of Fr . Specifically, Gourlay
et al. (2001) and Dommermuth et al. (2002) consider values of Fr = 10 and Fr = 4,
respectively.

To minimize computational complexity, neither of the above studies employs a
sphere in the simulation. Their initial condition is an approximation to the near
wake. In both cases, pancake eddies emerge in the late wake despite the absence
of the sphere or any externally imposed coherent structure on the initial condition.
Three-dimensional visualizations of the vorticity field by Gourlay et al. (2001) reveal
pancake eddies with a geometry similar to that of isolated vortex dipoles generated
in laboratory experiments (Praud & Fincham 2005). Gourlay et al. (2001) do not
observe multiple layers of pancake eddies connected by the complex vortex line
configuration conjectured by Spedding (2002). However, such an observation may
be biased by the relatively low values of Fr and Re (Billant & Chomaz 2001;
Sp02). The vorticity visualizations of Dommermuth et al. (2002) focus on horizontal
transects of vertical vorticity. When their Re is increased by a factor of 10–105,
an enhanced fine structure is observed until Nt ≈ 40. Diffuse pancake vortices (like
those reported in low-Re laboratory experiments) then emerge as soon as Nt ≈ 50.
Dommermuth et al. (2002) do not show any vertical cuts of the spanwise vorticity
field.

The very recent DNS study of Brucker & Sarkar (2010) has focused on contrasting
the mean flow scaling and the energy budgets between non-zero momentum and
momentumless wakes at Re = 104 and 5 × 104 and Fr = ∞ and 4. Values of Fr =2
and 20 are considered at Re = 104 for the non-zero momentum case but are used
strictly for comparison with previous experimental and computational studies. In
terms of the non-zero momentum case, this investigation agrees overall with the
findings of Gourlay et al. (2001) and Dommermuth et al. (2002) on the mean
flow scaling but does not provide results on the vorticity structure of the flow.
In agreement with Diamessis & Spedding (2006), a prolonged duration of the NEQ
regime at Re =5 × 104 is reported. Furthermore, the decay law of the turbulent kinetic
energy dissipation rate is found to follow inertial range scaling (Tennekes & Lumley
1972).

1.2.3. Self-similarity analysis

In an attempt to replicate the scaling behaviour of laboratory wakes and establish
a predictive tool for wake scaling at Re relevant to geophysical and ocean engineering
flows, Meunier, Diamessis & Spedding (2006) employ self-similarity analysis to
develop a scaling model for the mean flow evolution of a stratified turbulent wake.
The model assumes a self-similarly evolving near wake for which all vertical velocities
and Reynolds stresses are zero for Nt � 2. Beyond Nt = 2, the mean wake dynamics
are governed by a balance between turbulent diffusion of momentum in the horizontal
and strictly viscous diffusion of momentum in the vertical. A laminar, purely viscously
driven wake is finally established at very large distances (x/D ≈ O(Re3)) from the
body. Overall, when compared with corresponding mean flow measures from the
laboratory and DNS/LES, the model shows good agreement in terms of power-law
exponents and transition points between regimes of evolution. A notable exception
is that the model diverges from the experimentally observed 1/3 power-law exponent
for the wake width which exhibits an (Nt)1/2 and (Nt)1/4 growth in the NEQ and
Q2D regimes, respectively.
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1.3. High-Reynolds-number turbulence in strong stratification

Motivated by the observations of Lin & Pao (1979), Lilly (1983) proposed a
modification at high Re to the intermediate-to-late time phase of the life cycle
of a localized turbulent event evolving in an ambient stratification, as discussed
in § 1.2.1. He conjectured that, with increasing Re, the vertical shear layers will
become thinner, leading to a loss of vertical coherence. As the layers thin, the local
conditions for Kelvin–Helmholtz instabilities will become more favourable, leading
to the formation of secondary instabilities and turbulence and the establishment of a
horizontal energy spectrum with a −5/3 slope spanning a broad range of motions (this
spectral signature was proposed as the result of an inverse energy cascade process).
Lilly (1983) regards this state of motion as ‘stratified turbulence’ and this term is used
throughout this paper to refer to the secondary instabilities and turbulence induced
by buoyancy-driven shear. Lilly’s hypothesis has been corroborated by Riley &
de Bruyn Kops (2003) (hereafter referred to as RdBK), whose DNS employs an
initial condition consisting of a periodic array of oppositely signed Taylor–Green
vortices that gradually destabilize into pancake vortices. For values of Re l in the
range of [800, 6400], where l is a numerically imposed initial length scale of the
Taylor–Green vortices, the large scales show a weak dependence on Re l , a finding
consistent with the observations of Dommermuth et al. (2002). However, at sufficiently
high Re l , intermittent secondary Kelvin–Helmholtz instabilities develop, which lead
to localized patches of secondary turbulence (Hebert & de Bruyn Kops 2006) with
elevated levels of vertical kinetic energy.

Similar secondary instabilities and turbulence have been observed in DNS of
stratified homogeneous turbulence with and without rotation (Waite & Bartello 2003;
Brethouwer et al. 2007), DNS of an idealized late wake, consisting of an array
of staggered pancake vortices (Winters, McKinnon & Mills 2004), and DNS of
a pair of counter-rotating vertical vortices destabilized via zigzag instability in a
stratified fluid (Deloncle, Billant & Chomaz 2008). Finally, DNS of forced strongly
stratified homogeneous turbulence, where the values of N and ν were gradually
adjusted to allow for a near constant value of turbulent Froude number of 0.08 and
a progressive increase of a Taylor-microscale based Reynolds number from 200 to
1000, reported the emergence of overturning motions over roughly 1 % of the volume
of the computational domain when this Reynolds number exceeds the value of 700
(Laval, McWilliams & Dubrulle 2003).

The findings of the studies discussed above suggest that stratified wake flows
should be examined more closely. The end result could be important because the
instabilities and subsequent turbulence have the potential to significantly modify
the flow evolution at high Reynolds number, which is, in fact, representative of
most practical applications. Isolated observations of Kelvin–Helmholtz-like billows
at times as late as Nt ≈ 70 and 90 in towed grid (Fincham, Maxworthy &
Spedding 1996) and wake experiments (Sp02) provide preliminary evidence for
the importance of these secondary events in high-Re wake flows. However, no
systematic investigation exists in current literature of such secondary motions in
a localized canonical stratified flow with turbulent initial conditions, e.g. a wake or
jet.

1.4. Objectives and basic questions

The primary objective of this study is to investigate the scaling and flow structure of
a stratified turbulent wake over as broad a range of Re and Fr values as possible,
thereby extending beyond the corresponding restrictions of previous experiments
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and numerical simulations. To achieve this objective, a parallel spectral multi-
domain penalty method flow solver (Diamessis, Domaradzki & Hesthaven 2005,
hereafter referred to as DDH) is employed which is stabilized by explicit spectral
filtering. The high accuracy (due to its lower truncation error as compared to finite-
difference, finite-element and finite-volume schemes), spatial adaptivity and explicitly
controlled (via spectral filtering) artificial dissipation of this solver equip it with unique
advantages over equivalent numerical tools employed in past numerical studies.
As a result, the reproduction of the vertical structure of the wake throughout its
entire evolution is enabled at very high accuracy and resolution, unavailable to
previous numerical investigations, without concerns of spurious smoothing of the
scales critical to the dynamics of secondary motions. The intrinsic sensitivity of
a spectral/spectral-multi-domain scheme to any assumptions on initial/boundary
conditions and forcing (Boyd 2001) has also led to a much more rigorous and
careful treatment of simulation initialization than that previously given in the
literature.

This study aims to build on preliminary results by Diamessis & Spedding (2006)
and is driven by the following fundamental questions: What is the effect of Re on
the Fr-based scaling of the mean wake flow and the transition times across different
dynamical regimes as observed by Sp97 and Sp02? At high Re, will spectral multi-
domain-based LES (with its inherently weak artificial dissipation and strong localized
resolution of the wake core) reproduce secondary Kelvin–Helmhotz instabilities and
turbulence in the intermediate-to-late time wake? If indeed such secondary instabilities
are established, do they inhibit or simply delay the formation of pancake vortices?
Finally, how realistic are the assumptions of Meunier et al. (2006) of negligible vertical
transport at Nt � 2 at high Re?

2. Model formulation
2.1. Problem geometry

The base flow considered in this investigation is a stratified turbulent wake with
non-zero net momentum. Such a flow corresponds to the mid-to-late time wake of
a radially symmetric object of characteristic length scale D towed at velocity U in a
linear density stratification of frequency N , where

N2 ≡ − g

ρ0

dρ

dz
, (2.1)

where, according to the Boussinesq approximation, ρ0 is a reference density and ρ(z)

is the departure of the background density profile from this reference value. For the
purposes of this study, the radially symmetric object is considered to be a sphere
to allow comparison with relevant laboratory investigations (SBF96b; Sp97; Sp02).
Challenges of computational complexity (elaborated upon further in § 3) prevent
the spatial discretization from accounting for the sphere and keep its focus only
on the flow generated in the sphere’s wake. Thus, as implemented by Orszag &
Pao (1975) and in more recent studies of stratified turbulent wakes (Gourlay et al.
2001; Dommermuth et al. 2002; Diamessis et al. 2005; Brucker & Sarkar 2010),
the computational domain and spatial discretization do not account for the sphere
and focus only on the flow generated in its wake. Specifically, the computational
domain is a three-dimensional volume inside the wake region, centred on the wake
centreline. Within this volume of dimensions Lx × Ly × Lz (shown in figure 1), the
three-dimensional and time-dependent wake flow field is computed. Effectively, the
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Figure 1. Computational domain for the simulation of a mid-to-late-time stratified turbulent
wake with non-zero net momentum. The wake was originally generated by a sphere of diameter
D, towed with a velocity U , which however is not present in the computational domain. The
domain dimensions are Lx × Ly × Lz. Consistent with the salt-stratified water tank, the domain
has a solid wall bottom and free-slip top.

computational domain may be regarded as an approximation to a three-dimensional
‘window’ fixed in a stratified water tank, similar to the PIV sampling windows of
SBF96b and Sp02.

In this fixed reference frame, the sphere is assumed to have travelled through the
domain as it continues to move from left to right. After evolution time t , the results
may be interpreted as a realization of the above computation volume at a distance
x = x(U/t) = x0 + Ut behind the moving sphere, where x0 = 8D (see also § 3.2).

The numerically computed solution is statistically homogeneous along the wake axis
but is non-stationary in time. The wake in the frame of a uniformly moving sphere
is statistically stationary in time but inhomogeneous in the direction of the wake
axis. We refer the interested reader to Orszag & Pao (1975) and Dommermuth et al.
(2002) on how the above Galilean transformation between x and t directly relates
streamwise spatial averages in our numerical solution to time averages computed
behind a uniformly translating sphere.

The domain is assumed to be periodic in both horizontal directions. The periodicity
assumption in the x -direction is valid because the length of the computational domain
is much smaller than the total wake length (Dommermuth et al. 2002), which ensures
that the streamwise variation of all average quantities is negligible compared with
their variation in the spanwise and vertical directions. The spanwise periodicity
assumption is valid provided the horizontal length scale of the wake does not exceed
a threshold value, beyond which interactions with the wake’s spanwise-periodic image
are possible. Although a laboratory-fixed reference frame is considered, streamwise
periodicity allows a temporally evolving simulation which can be run up to as late as
Nt ≈ O(2000) (Dommermuth et al. 2002). Because of spanwise periodicity, internal
waves radiated by the wake re-enter the computational domain and thus after a certain
point later in time, the internal wave field does not correspond to its experimental
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counterpart. However, by that time the flow is efficiently decomposed into internal
waves and quasi-two-dimensional vortical modes and analysis of the latter (Riley &
Lelong 2000) is possible in isolation.

2.2. Governing equations and boundary conditions

The equations governing the problem investigated are the incompressible Navier–
Stokes equations under the Boussinesq approximation (DDH):

∂u
∂t

= −1

2
[u · ∇u + ∇(u · u)] + Fg − 1

ρ0

∇p′ + ν∇2u, (2.2)

∂ρ ′

∂t
= −∇ · (u(ρ ′ + ρ(z))) + κ∇2ρ ′, (2.3)

∇ · u = 0, (2.4)

where

Fg = −g
ρ ′

ρ0

k̂, (2.5)

u =(u, v, w) is the velocity vector and k is the normal unit vector in the vertical

direction. The nonlinear term in (2.2) is written in the skew-symmetric form to
minimize aliasing effects in the numerical solution (Boyd 2001). The quantities p′ and
ρ ′ are the perturbations of the pressure and the density from their respective (mean)
reference values, which are in hydrostatic balance (DDH).

The boundary conditions used in the numerical model correspond to the description
of the computational domain given in § 2.1. In the horizontal direction, periodic
boundary conditions are employed. The bottom boundary is a solid wall with a
no-slip boundary condition. The top boundary is a free-slip non-deformable surface.
Finally, the density perturbation is subject to a Dirichlet boundary condition at both
vertical boundaries.

2.3. Numerical method

The temporal discretization of (2.2) and (2.4) consists of three fractional steps (DDH):
the explicit treatment of the nonlinear terms, the implicit solution of a Poisson
equation for the pseudo-pressure, which ensures an incompressible velocity field,
and the implicit solution of a Helmholtz equation for the viscous terms, where the
physical boundary conditions are imposed. This splitting approach combines third-
order stiffly stable and backward-differentiation schemes with a dynamic high-order
boundary condition for the pressure. Thus, the maximum possible value of stable
time step is attainable (Karniadakis, Israeli & Orszag 1991). An analogous operator-
splitting approach is used for the advection-diffusion equation (2.3) for the density.
Finally, an adaptive time-stepping scheme is employed to smoothly increase the time
step during the less energetic buoyancy-dominated regime of the flow evolution,
thereby minimizing the cost of advancing the simulations as far as possible in time.
Conversely, at higher Re, where the emergence of secondary energetic instabilities is
likely at intermediate times, adaptive time stepping enables an automatic decrease
of the time step. Through application to canonical test cases such as the primary
instability of a temporally evolving shear layer and fully developed laminar channel
flow, the solver has been tested over a range of step sizes spanning two orders of
magnitude and has been found to be O(�t2).
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In the periodic horizontal direction, Fourier spectral discretization is used with N̂x

and N̂y Fourier modes in the longitudinal and spanwise directions, respectively. In
the vertical direction, the computational domain is partitioned into M subdomains
of variable height Hk (k = 1, . . . , M) and fixed order of polynomial approximation N̂

(figure 3). The total number of vertical grid points is N̂z = M(N̂ + 1) + 1. Within each
subdomain, a Legendre spectral collocation scheme (Boyd 2001) is used. Subdomains
communicate with their neighbours via a simple patching condition (DDH). The
multi-domain scheme allows for increased vertical resolution in the turbulent core
of the wake while also resolving adequately, yet not excessively, the internal wave-
dominated ambient.

The resolutions used in this paper aim to capture the dynamically relevant scales
of motion in the wake while accommodating available computational resources and
the need for rapid run turnaround. As a result, the available numerical resolution
at higher Reynolds numbers is not sufficient to capture both the large, energy-
containing and small, dissipative scales of turbulence. With the bulk of the numerical
resolution devoted to large scales, the effects of molecular viscosity which are
active in the range of small, dissipative scales cannot be resolved. Attempts to
solve Navier–Stokes equations using DNS in such a case will result in an under-
resolved simulation. When spectral schemes, which are inherently non-dissipative, are
used in under-resolved simulations, the resulting Gibbs oscillations are compounded
by aliasing effects driven by the nonlinear term, leading to catastrophic numerical
instabilities (Gottlieb & Hesthaven 2001). To overcome such difficulties, either the
governing equations must be modified, e.g. by introducing an explicit subgrid-scale
(SGS) model term as is commonly done in LES, or by modifying the numerical
method of solution by introducing procedures that control and prevent numerical
instabilities. We follow the latter approach using two techniques that are designed to
ensure stability of the numerical solution while preserving high accuracy: explicit
spectral filtering and penalty schemes (see § 2.4 for a summary and DDH for
details).

All simulations were performed using a parallel version of the Navier–Stokes
solver based on the single process multiple domain (SPMD) paradigm. In physical
space, the computational domain is partitioned along the spanwise direction into
distinct vertical slabs of thickness Ly/N̂P and each slab is assigned to one of N̂P

processors. Communication across processors is implemented through the message
passing interface (MPI). In Fourier space, the computational domain is partitioned
into vertical slabs of thickness Lx/N̂P .

2.4. Stabilization methods: spectral filtering and penalty techniques

Penalty methods consist of collocating a linear combination of the equation and
boundary/patching conditions (the latter multiplied by a penalty coefficient) at
the boundaries/subdomain interfaces, respectively (Hesthaven & Gottlieb 1996;
Hesthaven 1997). A smooth transition from the subdomain interface to its interior
is thus possible, enabling stable computation of the high-Re ‘internal’ (internal with
respect to the subdomain boundary) dynamics of the flow without having to resolve
the thin numerical/viscous physical boundary layers or internal sharp gradients at
subdomain interfaces (DDH).

Spectral filtering consists of the explicit application of an order p low-pass filter
function to the spectral (modal) expansion of the solution. Application of a pth
order spectral filter is the non-stiff equivalent to the use of a pth order hyperviscous
operator in the governing equations (Gottlieb & Hesthaven 2001).



Stratified turbulent wakes at high Reynolds numbers 61

In this study, an exponential filter (Gottlieb & Hesthaven 2001) is used:

σ (k) = exp

[
−α

(
k

kc

)p]
, (2.6)

where p is the filter order and α = −ln(εM ), with εM being the machine precision. In

Legendre space, the filter function σ (k) multiplies the kth Legendre modal coefficient
and kc represents the index of the highest resolved mode. In contrast, in Fourier space,
for the purpose of implementing efficient two-dimensional filtering, k is selected
to represent the magnitude of an individual Fourier wavenumber pair (kx, ky), i.e.
k = (k2

x + k2
y)

1/2 and kc is chosen as kc ≡ [(k2
x,max + k2

y,max )]1/2, i.e. the maximum resolved
Fourier wavenumber pair magnitude for the given domain dimensions.

In terms of the temporal discretization summarized in § 2.3, the penalty method is
applied at two different levels (explicit advancement of nonlinear terms and implicit
treatment of viscous terms) in the incompressible Navier–Stokes equations. Legendre
spectral filtering of the same order p is applied after all three fractional steps. Fourier
spectral filtering is applied only after advancing the nonlinear terms to suppress the
accumulation of high-wavenumber numerical noise driven by aliasing.

Legendre filters have a negligible influence on the subdomain interfaces (Gottlieb &
Hesthaven 2001), where the influence of the penalty method is the strongest. Thus,
the two stabilizing techniques complement each other in enabling numerical stability
through the entire extent of a spectral subdomain. As a final safeguard against
numerical instability, adaptive interfacial averaging is used in the vertical direction
(DDH).

2.5. Relation of spectral filtering to LES
LES techniques are used in situations where available numerical resolution is
insufficient to simulate all dynamically relevant scales of turbulence. The classical
LES approach uses physical arguments to account for the effects of small scales that
cannot be resolved on an LES mesh. Most frequently, these effects are represented
through an eddy viscosity term that intends to model an energy flux to the unresolved
scales as the turbulence-enhanced dissipation. Another approach, initially proposed
by Boris et al. (1992), and often regarded as implicit large-eddy simulation (ILES),
is based on the observation that truncation errors in certain discretizations of
Navier–Stokes equations introduce numerical dissipation with the implicit effects
of the discretization qualitatively similar to the effects of the explicit SGS models in
traditional LES. Specifically, such behaviour is observed if one discretizes the Navier–
Stokes equations (2.2)–(2.4) using higher-order non-oscillatory methods, also known
as monotonicity or shape preserving, shock capturing or monotone schemes; e.g. total
variation diminishing (TVD), flux-corrected-transport (FCT) and various flux-limited
and sign-preserving schemes (Zalesak 1979; Sweby 1984; Harten et al. 1987). A good
review of ILES and its applications is given by Grinstein & Fureby (2002) and in a
recent book by Grinstein, Margolin & Rider (2007).

More broadly, ILES can be defined as any procedure for under-resolved
simulations of turbulence that relies on purely numerical techniques to achieve
stable simulations. Sometimes such methods are called stabilized LES (Minguez,
Pasquetti & Serre 2009). In that sense, the simulations presented herein may be
viewed as a spectral implicit LES where the stabilization is not provided by the
truncation error of the numerical discretization (which is exponentially small for a
spectral method, Boyd 2001) but by the spectral filter, which may be viewed as an
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intrinsic component of the numerical discretization in the case of under-resolved
simulations.

When using ILES one must, of course, be aware that simply guaranteeing numerical
stability does not guarantee physically correct dynamics of the resolved scales.
Therefore, the results from ILES must always be compared with experiments and
simulations, either fully resolved DNS, or LES performed with other models, to
gain confidence that the method is not only numerically stable but also physically
correct. To this end, implicit LES of various flows that combine high-accuracy
spatial discretizations with explicit filtering have shown very good agreement with
measurements, previous DNS and theory in terms of large-scale quantities (e.g. decay
rates of turbulent kinetic energy, profiles of mean and r.m.s. (root mean square)
fluctuating velocity and Reynolds stresses, and energy spectra) (Bogey & Bailly 2006;
Sengupta, Jacobs & Mashayek 2009). In a similar context, the spectral vanishing
viscosity (SSV) method, frequently used with spectral techniques, has been validated
e.g. by Karamanos & Karniadakis (2000) and Minguez et al. (2009). Furthermore, for
compressible flows, Cook & Cabot (2005) applied hyperviscosity to shear–turbulence
interaction to achieve spectral-like behaviour.

Such methods may be particularly suitable for the simulation of stratified flows
where the assumptions of isotropy and homogeneity, a fundamental building block
of many eddy viscosity-based LES models (Sagaut 2002), may not hold (Ozgokmen,
Iliescu & Fischer 2009). On the other hand, a possible shortcoming of the use of
explicit spectral filtering as an SGS model (as done in this study) may lie in how
accurately it replicates the energy transfer to the unresolved scales (Sengupta et al.
2009) and, thus, how well it estimates dissipation rates of kinetic energy and scalar
variance.

Some answers to these questions are found in the analysis of Diamessis, Lin &
Domaradzki (2008), who quantified explicit spectral filtering and penalty schemes in
terms of the scale-dependent, effective numerical viscosity. Specifically, the numerical
viscosity has a constant plateau followed by increasing values for scales close to
the mesh cutoff. For a sufficiently fine mesh size, the plateau values are less than
the molecular viscosity, indicating that the numerical dissipation does not affect the
large scales of interest in this work. On the other hand, as expected, the scales
of the order of the mesh size are strongly affected by the numerical dissipation.
Therefore, given that the estimation of dissipation rates is not a focus of this
paper, the associated shortcomings of explicit spectral filtering do not pose a major
concern, and the use of more advanced SGS models (particularly the estimation
model developed by the third author, Domaradzki, Loh & Yee 2002) will be left for
future study. This choice is further motivated by the good agreement of the current
numerical model with previous experimental, numerical and theoretical results for
the mean wake flow and vorticity field structure (and the associated buoyancy-driven
shear).

3. Initialization
3.1. Replacing the sphere

In a stationary horizontally periodic domain (§ 2.1), the introduction of a sphere would
only allow for a spatially (and not temporally) evolving simulation. For the domain
dimensions described in § 4, a spatially evolving wake simulation could develop
over a downstream distance no greater than x/D = 10 before the onset of spurious
periodic interactions. For spatial development over larger downstream distances
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(x/D ≈ O(10 000)), a complex coupling between a spherical grid near the sphere and a
Cartesian one in the far wake would be necessary. Even if this coupling was efficiently
implemented by replacing the Fourier discretization in the horizontal direction with
a non-periodic, Legendre/Chebyshev polynomial-based, scheme (Cousin & Pasquetti
2004), the resolution of the far wake over a downstream distance x/D ≈ O(10 000)
would be prohibitively costly. As a result, any existing sphere-inclusive simulations of
stratified wakes, using either low-order finite-differences (Hanazaki 1988) or spectral
elements (Cousin & Pasquetti 2004), have been restricted to the near-wake and to
body-based values of Re in the range of [200, 300].

Constrained by the absence of the wake-generating sphere and driven by a focus
on the intermediate-to-late wake physics, this study seeks an initial condition which
will represent the near wake as accurately as possible and will allow a physics-
based/transient-free transition into the NEQ regime. For all Fr � 4, the near wake is
governed by three-dimensional turbulent dynamics over an Fr-dependent downstream
distance of x/D =(Fr/2)Nt ≈ (Fr/2) 2 (Sp97), beyond which buoyancy forces begin
to affect the larger scales of the flow. Near-wake dynamics are characterized by a
wealth of complex phenomena such as boundary-layer separation (Chomaz et al.
1992), an attached core of absolutely unstable motion (Monkewitz 1988), a larger-
scale helical mode (Chomaz et al. 1993b) and the presence of convectively unstable
shear layers, radially positioned around the wake centreline. The destabilization by
turbulence of these shear layers will quickly establish a self-similarly evolving wake
structure (Bevilaqua & Lykoudis 1978). At some short distance downstream, the
turbulence is in a state of equilibrium between turbulent dissipation and production
(Dommermuth et al. 2002). Recent LES and DNS of stratified wakes (Gourlay
et al. 2001; Dommermuth et al. 2002) have shown that in the above phenomena,
the destabilization of the free shear layers is the most important for replicating the
intermediate-to-late wake in both stratified and unstratified environments.

3.2. Mean and fluctuating flow fields

Following the above discussion, the initial flow field is chosen as the superposition of
a mean velocity profile and a turbulent fluctuation field:

u(x, y, z, t) = UX(y, z, t) + u′(x, y, z, t). (3.1)

The subscript X indicates averaging in the streamwise direction.
A variety of approaches may be found in the literature regarding the specification

of the magnitude and distribution of the mean and fluctuating velocity fields in
(3.1). Gourlay et al. (2001) chose the same axisymmetric Gaussian profile for both
mean and fluctuating profiles but did not specify to what downstream location
of a sphere wake these profiles corresponded. Dommermuth et al. (2002) used an
axisymmetric Gaussian for the mean profile and the derivative of a Gaussian for the
turbulence profile, both constructed by an approximation to the unstratified wake
laboratory data of Bevilaqua & Lykoudis (1978) at x/D =6. Brucker & Sarkar (2010)
employed an approach similar to Dommermuth et al. (2002) but based their initial
profiles at Re = 104 on the data of Bevilaqua & Lykoudis (1978) and at Re = 5 × 104

on the data of Uberoi & Freymuth (1970). In addition, a criterion different from
that of Dommermuth et al. (2002) was used to determine the termination point
of the relaxation procedure. Finally, DDH employed the same Gaussian profile as
Dommermuth et al. (2002) used for the mean velocity profile and extrapolated the
structure of the fluctuating profile from measurements by Sp01 at Nt = 9 for Fr = 4.
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This study employs the functional forms chosen by Dommermuth et al. (2002) for
both mean and fluctuating flow fields, as these offer the most accurate representation
of free shear layer-driven near-wake turbulence subject to balance between production
and dissipation. The mean profile is given by

UX(y, z) = U0 exp

[
− 1

2

(
y − y0

LH

)2

− 1

2

(
z − z0

LV

)2]
, (3.2)

where y0 = Ly/2 and z0 = Lz/2. Note that U0 is the maximum centreline velocity and
LH and LV are the initial horizontal and vertical length scales. Initially, LH = LV and
the streamwise-averaged spanwise and vertical velocities, VX = WX =0. The initial x -
averaged r.m.s. distribution of the fluctuating velocity is assumed to be axisymmetric
and equipartitioned among its three components, an assumption valid for a wake
that is actively turbulent over all its scales:

u′
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(
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)
(3.3)

where r = ((y − y0)
2 + (z − z0)

2)1/2, r0 = (y2
0 + z2

0)
1/2 and u0 is a characteristic turbulent

fluctuation velocity. The actual values for U0, LH and u0/U0 are prescribed as those
corresponding to an axisymmetric wake assumed to be evolving self-similarly at
x/D = 2 (see Appendix A for more details and the justification for the self-similarity
assumption).

The three-dimensional fluctuating velocity field is constructed as spectrally random
noise in three-dimensional Fourier space with a k−5/3 energy spectrum. An inverse
Fourier transform is applied to convert the noise into physical space and in the
vertical the fields are projected on the non-uniform Gauss–Lobatto–Legendre grid of
each subdomain. Finally, the data are windowed onto the envelope of the r.m.s. profile
of (3.3). The use of white noise is avoided because it is unphysical and detrimental to
the stability of the numerical solution.

Initially, the fluctuating and mean velocity fields are uncorrelated. In an under-
resolved simulation, such as that considered here and the LES of Dommermuth et al.
(2002), if the initial flow field is simply set as the superposition of the fluctuating
and mean velocity fields, the turbulent fluctuations evolve independently of the mean
and decay after only a few eddy turnover times, beyond which the mean flow decays
strictly due to viscous effects. To avoid this behaviour, which is caused by the lack
of correlation between fluctuating and mean velocity fields, a preliminary ‘relaxation’
simulation (Dommermuth et al. 2002) is run to generate a physically realistic velocity
field. During relaxation, the flow is forced to maintain constant mean and r.m.s.
fluctuating velocity profiles according to (3.2) and (3.3), while the spatial distribution
of the turbulent fluctuations, and thus the Reynolds stresses, is allowed to vary. The
relaxation is run for a time equal to approximately 10LH/U0, i.e. roughly 10 local
turnover times. At this point, production and dissipation reach an asymptotically
steady state. Note that the well-resolved DNS of Gourlay et al. (2001) and Brucker
& Sarkar (2010) did not require any relaxation procedure. A possible explanation
for this difference is that both of these DNS studies, in contrast to those considered
here and in Dommermuth et al. (2002), did resolve the fastest-growing modes of the
radial shear layers, thus allowing the rapid formation of a well-correlated mean and
fluctuating flow component before the unphysically premature decay of the latter.

Upon termination of the relaxation procedure, the downstream distance from the
sphere is assumed to be equal to x/D =2 (and not x/D = 6 as chosen by Dommermuth
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(Velocity fluctuations
correlate with
mean flow. Mean and
r.m.s. profiles kept
‘frozen’)

Relaxation

Transition

(Self-similarity established
in mean flow. Background
density gradient gradually
introduced)

Main run

x/D = 2

x/D = 8,
t = 0 s,
[Nt]0 = 2/(Fr/2)

x/D = 8 + Ut/D,

Time in
buoyancy units:
[Nt]0 + Nt

Figure 2. Stages in the simulation of a stratified turbulent wake: preliminary (relaxation and
transition) and primary simulations. During the transition run, the buoyancy clock does not
advance linearly with downstream distance x/D to allow the gradual introduction of the
ambient density gradient.

et al. 2002). As outlined in detail in Appendix A, the mean wake flow does not
immediately behave self-similarly at this point. An additional preliminary simulation,
a ‘transition’ run, is thus performed, where mean and fluctuating velocity profiles are
allowed to adjust until self-similarity is established in the former. The transition run
has a duration of tU/D =6, which sets the equivalent of downstream distance from
the sphere at the beginning of the primary simulation to be equal to x/D = 8. During
the transition run, an initial fluctuating density field is generated by the evolving
turbulent wake in an ambient density gradient (and the Brunt–Vaisälä frequency
N) that are gradually ramped to the desired value to avoid re-stratification-related
transients, as elaborated in detail in Appendix B.

On account of the ramp-up of N during the transition run, time in buoyancy
units and downstream distance cannot be connected with the common expression
Nt = (x/D)/(Fr/2) (SBF96b). At the end of the transition run, buoyancy time is set
to Nt = [Nt]0 = 2/(Fr/2) and physical time is set to t = 0 s. At this point, the primary
simulation is started and, at any point therein, time in buoyancy units is given by
[Nt]0 + Nt . The equivalent downstream distance is given by x/D = x0/D + Ut/D,
where x0/D is equal to 8 and not 2 (see the previous paragraph). A schematic
diagram of the different simulations (relaxation, transition and primary) and the
relative positioning with respect to x/D, Nt and time t is given in figure 2.

Finally, when mean flow quantities are plotted in log-log coordinates as a function
of x/D, growth/decay rates indicative of a self-similar behaviour of an unstratified
wake are clearly visible at x/D = 8 (figure 7a–c). However, when plotting the same
curves as a function of Nt in log-log form, a change in slope is observed at small
equivalent x/D values, an artefact of the shift in origin when switching between x/D

and Nt coordinates (figure 7b, c and f ). Nonetheless, no change in slope is visible in
these curves for Nt equivalent to x/D � 20.

4. Numerical simulations
This paper considers results from six different numerical simulations of

stratified turbulent wakes with non-zero net momentum at Reynolds number,
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Re = UD/ν = 5 × 103 and 105, and internal Froude number, Fr = 2U/(DN) = 4, 16
and 64. Hereafter, each run will be labelled as RxFy, where x = Re/103 and y = Fr .
For all simulations, the values of U and D are the same. The Reynolds number and
Froude number are varied by changing the values of ν and N , respectively. At a fixed
Re value, all Fr simulations use the same relaxation run. The final result of this run
is used to initialize the particular transition run for the desired Fr , where the mean
density gradient is ramped-up to its designated value.

The computational domain has an initial horizontal dimension of
Lx × Ly = 262

3
D × 131

3
D and corresponds to a virtual stratified water tank of height

Lz = 12D. Such a domain length is adequate to allow for multiple streamwise
wavelengths of a vortex shedding instability. For values of Lz, Re, Fr and initial
wake height considered here, confinement of vertical wake growth due to turbulent
entrainment (3D regime) or viscous diffusion (Q2D regime) is not an issue.
Nevertheless, for Lz = 12D, simulations with Fr > 200 were not possible due to vertical
confinement of viscously driven vertical growth of the Q2D wake.

The specific choice of initial domain width allows a lateral wake expansion until
a value of LH = 0.15Ly before interactions with the wake’s periodic image are
established. To enable running late into the Q2D regime, the regridding technique
of Gourlay et al. (2001) is periodically applied. Whenever LH = 0.08Ly , the solution
is re-interpolated onto a new domain with double the spanwise dimension and half
the spatial resolution. Fourier interpolation is used to interpolate on the grid points
within the original domain. On the new grid points outside the original domain, the
solution is extrapolated as equal to the value at the previous domain boundary. These
values are typically four or fewer orders of magnitude lower than their counterparts
inside the wake core. Nonetheless, a pointwise discontinuity does develop at the
location of the boundary of the original domain. Application of a Fourier spectral
filter of order pF to the regridded solution in the spanwise direction eliminates this
discontinuity. As a final check, the evolution of the vorticity field structure and the
time series for U0, LV and LH sampled from the onset of regridding until the time
LH = 0.15Ly have been compared in regridded and non-regridded simulations. No
significant differences are observed.

All simulations are forced to stop when the number of coherent structures remaining
in the flow is inadequate to extract any meaningful mean flow statistics. This stopping
point corresponds to a downstream distance x/D ≈ 5000. The ability to run further
in time (or for greater downstream distances) would require a longer domain that
could accommodate at least double the number of pancake vortices in the late wake,
i.e. a doubling in domain length, a change that the available computational resources
cannot accommodate for the high-Re runs.

The spectral multi-domain grids, with the horizontal direction employing a uniform
grid, are shown in figure 3. Note that M = 7 and 13 non-uniform height subdomains
of order of approximation N̂ = 24 and N̂ = 40 are used in the vertical direction at
Re = UD/ν = 5 × 103 and 105, respectively. The resolution at Re =5 × 103 and 105 is
256 × 128 × 175 and 512 × 256 × 531 mesh points, respectively. Fourier and Legendre
spectral filters of the order of (pF , pL) = (20, 8) and (10, 6) (see § 2.4) are used in the
low- and high-Re runs, respectively. Figure 4 shows the filter functions used in this
study.

Grid-independence was established at Re =5 × 103 by performing an Fr = 4
simulation with resolution 128 × 64 × 119, corresponding to M = 7 subdomains of
the order of N̂ = 16 in the vertical. The fine-grid resolution run produced nearly
identical mean and fluctuating velocity profiles and streamwise spectra (over the
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Figure 3. Streamwise truncated Oxz section of the numerical grid employed in this study
for the simulation of a stratified turbulent wake. In (a, b) and (c, d ) the grid used for the
simulations at Re = 5 × 103 and Re = 105, respectively, is shown. In (a, c) the full extent of
the computational domain for each Re is shown. The black solid lines delineate subdomain
interfaces with the local Gauss–Lobatto–Legendre (GLL) grid omitted for clarity. In (b, d ) a
zoomed view of the wake core region for each Re with the local GLL grid included is shown.

The Re = 5 × 103 run employs M = 7 subdomains of the order of approximation N̂ = 24, with
subdomain origins located at z/D = − 6, −3.17, −1.67, −0.5, 0.5, 1.67 and 3.17. The Re = 105

run employs M = 13 subdomains of the order of approximation N̂ = 40, with subdomain
origins located at z/D = − 6, −3.67, −2.33, −1.33, −0.8, −0.4, −0.13, 0.13, 0.4, 0.8, 1.33, 2.33
and 3.67.

common range of resolved wavenumbers) over the entire wake evolution. The fine
grid results are presented in this paper. In the higher-Re runs, N̂ (p-refinement) is
increased and subdomain thickness (h-refinement) and spectral filter order are reduced
to provide sufficient and numerically stable resolution of the volume-averaged vertical
Taylor scale lz, a typical measure of the thickness of the inclined vertical shear layers
that develop in the intermediate-to-late wake (RdBK) (see figures 10 and 11). An
a priori estimate of lz at Re = 105 may be obtained from the corresponding value
observed at Re =5 × 103 by appealing to the scaling lz ≈ Re−1/2 proposed by RdBK.
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Figure 4. Exponential filter functions σ (k/kC) for the four different filter orders p = 6, 8,
10 and 20 used in this study. In Legendre space, k and kC represent the mode number
and total number of available modes, respectively. In Fourier space, k and kC represent the
two-dimensional wavenumber vector magnitude and the corresponding maximum value over
all resolved horizontal wavenumbers, respectively.

According to Billant & Chomaz (2001), at high Re, lz ≈ Fr1/3. Thus, if lz is adequately
resolved at Fr = 4, it is also such at Fr =16 and 64.

The adequacy of resolution for the Re = 5 × 103 and 105 simulations is evident
in figure 5, which shows compensated one-dimensional (streamwise) spectra of the
turbulent kinetic energy (averaged within the wake region) at Nt =1, 30 and 70 for
the Fr =4 simulations. For the non-filtered range of scales, the form of all spectra in
figure 5 is consistent with that observed in the mixed model LES of Dommermuth
et al. (2002) (Gourlay et al. 2001 do not report any spectra for their stratified wake
simulations). At Nt = 1, the R100F4 curve has significantly higher spectral content
than its low-Re counterpart, as shown by a fairly broad inertial range visible in the
range 2.5 <kxD < 15. The effect of viscosity on the resolved scales of Re = 5 × 103 is
evident due to the more rapid drop-off of the spectrum within the range of scales
directly unaffected by the filter. For all times shown and both Re, the energy spectra
drop off smoothly at the higher range of wavenumbers not directly influenced by the
filter and no sign of spectral blockage, i.e. spurious accumulation of energy at
the highest resolved modes due to under-resolution, is observed (Boyd 2001). Instead,
the filter produces artificial energy ‘anti-accumulation’ as shown by the sharp spectral
slope in the range of wavenumbers it directly affects. Such behaviour should not be
a cause for concern as the higher modes of the numerical solution are not necessarily
physically correct (DDH). Finally, a very interesting difference between the two Re is
visible in the spectra at Nt � 30. The R5F4 curve has a very sharp slope for kx/D > 2.5.
In contrast, the R100F4 spectrum displays a much higher energy content at higher
horizontal wavenumbers as shown by a pronounced k−5/3

x inertial range spanning
almost a decade. This −5/3 signature is intimately linked to the flow structure
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Figure 5. Compensated one-dimensional (streamwise) spectra of turbulent kinetic energy
calculated for Re = 5 × 103 and 105. The spectra are averages of estimates taken at spanwise
locations located in the interval (y0 − 2LH , y0 + 2LH ) on the horizontal centreplane. Spectra
are sampled at different dynamical regimes of the wake evolution. Vertical lines represent
the approximate limit over which the Fourier filter directly affects the numerical solution
(dash-double dotted line, Re = 5 × 103; dotted line, Re = 105).

observed in § 5.2 and its implications are addressed briefly in § 6.4. Finally, Legendre
spectra in the vertical direction examined for all values of Re and Fr (not shown
here) do not either show any signs of spectral blockage at the highest resolved modes.

Figure 3(d ) indicates that the Re = 105 runs employ 5 subdomains, i.e. 205 vertical
grid points are assigned to the interval −0.8 <z/D < 0.8, i.e. a factor of 6 increase
with respect to the simulations of Dommermuth et al. (2002), which assigned to the
same portion of the wake core 35 uniformly spaced vertical grid points. In addition,
the Legendre multi-domain technique has a very high order of accuracy and very
weak artificial dissipation (explicitly controlled through high-order spectral filtering).
Both these features have a distinct advantage over the second-order-accurate finite-
difference scheme used by Dommermuth et al. (2002) in the vertical direction. The
strong artificial dissipation of such a low-order scheme is further augmented by that
driven by the inherently dissipative SGS model used by Dommermuth et al. (2002).
On a similar note, the finite-volume-based DNS of Brucker & Sarkar (2010) initially
assigned 100 grid points to the same spatial interval. However, as their simulations
advanced in time, regridding was performed in both the horizontal and vertical
directions, indicating that during the NEQ regime, not more than 50 grid points
covered the central region of the wake.

The initial computational time step �t is chosen as such that the CFL stability
criterion is obeyed in all three spatial directions for a third-order stiffly stable scheme.
The following requirements are imposed:

�t
umax

�x
< 0.18, �t

vmax

�y
< 0.18, 0.7 < �t

[
w

�z

]
max

< 0.9. (4.1)
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Figure 6. Self-similar scaling of UX(y, z) for four values of Nt from 1 to 500 for Re = 5 × 103

and Fr = 4. (a) UX(y) sampled on the Oxy centreplane and (b) UX(z) sampled on the Oxz
centreplane.

In the Re = 5 × 103 and 105 runs, the time step at beginning of relaxation is set to
�t/(D/U ) = 0.0336 and 0.0045, respectively. The adaptive time-stepping scheme is
activated whenever the time step reaches the lower or upper bound of the vertical CFL
criterion and the time step is increased or decreased by a factor of 1.25, respectively.
During relaxation, the time step weakly oscillates around its initial value. At the end
of the primary simulations at low Re, the time step has increased by a factor of 10–40,
the latter value corresponding to Fr =64. The equivalent time step increase for the
high-Re simulations is a factor of 100–400. The maximum allowable time step is set
at �tmax = 2π/(60N) to allow adequate resolution of one buoyancy period.

All simulations performed employ the MPI-based parallel implementation of the
flow solver described in § 2.3. The parallel solver scales linearly on up to 512 processors
on a distributed memory cluster. The Re = 5 × 103 runs use N̂P =32 processors,
whereas their Re = 105 counterparts require N̂P = 256. All simulations and post-
processing were performed at the University of Southern California High Performance
Computing Center’s Linux cluster. On this machine, the average wall-clock time
required for a computational time step is 5 and 14 s for the low- and high-Re values,
respectively. The respective durations of the ‘relaxation’ runs in wall-clock time were
15 h and 9 days. The primary simulations at Re =5 × 103 required between 16 and
24 h of wall-clock time. The wall-clock timings for the high-Re simulations ranged
between 14 and 36 days. For both Re, the Fr = 64 cases were the most costly.

5. Results
5.1. Similarity scaling

The similarity scaling of the characteristic mean velocity and length scales is first
examined. The values of U0, LH and LV are obtained from least-squares fitting a
Gaussian, as defined by (3.2), to the x -averaged mean profile calculated at individual
sampling times in the run evolution. As shown in figures 6(a) and 6(b) for run R5F4,
and observed across all values of Re and Fr , rescaling UX(y) and UX(z) with U0, LH

and U0, LV , respectively, leads to a satisfactory collapse of the profiles onto two single
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curves, in agreement with the findings of SBF96b and Sp01. By virtue of the design
of the initial condition (see § 3), the mean velocity profile is self-similar at x/D = 8,
corresponding to Nt = 1 for the curves of figures 6(a) and 6(b).

Figure 7(a) shows the evolution of the mean centreline velocity U0 as a function
of x/D. At small values of x/D, i.e. in the 3D regime, all cases have a decay
rate of (x/D)−2/3 characteristic of unstratified axisymmetric wakes (Tennekes &
Lumley 1972). This decay rate occurs over a window of x/D values whose extent is
proportional to Fr . The −2/3 power law is then followed by a much slower decay rate
of U0 which is responsible for higher values of U0 with decreasing Fr at a given x/D.
As explained by Sp97, this reduced decay rate of the mean velocity may be attributed
to re-stratification effects and the accompanying conversion of the available potential
energy of the overturned isopycnals into horizontal kinetic energy, phenomena which
intensify with decreasing Fr .

Following SBF96b and Sp97, U0 is rescaled as (U0/U )Fr2/3 and is plotted as a
function of Nt (figure 7d ). A satisfactory collapse of the U0(Nt) curves results across
all Fr for Nt > 4. During the 3D regime, use of Nt units on the horizontal axis yields
a decay rate which is lower than (Nt)−2/3 (although figure 7a clearly shows a −2/3
power law when plotting U0 as a function of x/D). This result is an artefact of the
shift in origin when switching between x/D and Nt coordinates (see the discussion
in § 3.2). Consequently, the exact beginning of the NEQ regime in Nt units cannot be
determined.

Nevertheless, for all simulations beyond Nt = 4, U0 does have a reduced decay
rate, the characteristic signature of the NEQ regime. Furthermore, the corresponding
power-law exponent is very close to the −1/4 value observed by Sp97. For all
Re =5 × 103 cases, the persistence of the reduced decay rate stops at some point
within the interval 20 <Nt < 30. Beyond this point, a faster decay rate is observed
which compares well with the (Nt)−0.76 power law reported by Sp97 for the Q2D
regime. Sp97 not only identifies an NEQ-to-Q2D transition point of Nt = 50 for
his wake experiments but also suggests that this value is flow-dependent. Thus, the
earlier transition in the LES may result from the assumptions in designing the initial
conditions.

An (Nt)−0.76 power-law transition into the Q2D regime is also observed for the
Re =105 simulations. However, offsetting different Fr curves in the vertical (figure 7e)
shows a visible delay of this transition with respect to the low-Re runs. The associated
break-point occurs within the interval 60 < Nt < 120, its location being Fr-specific. At
a given Fr , the duration of the NEQ regime, as represented by the −1/4 power law
in U0(Nt), is clearly prolonged with increasing Re. The oscillatory behaviour during
Nt ∈ [50, 200] for the R100F16 run is most likely not statistically significant and
could be eliminated by performing more simulations at the given values of Re and
Fr , a strategy that could be pursued for all governing parameter values considered
in this paper. Such a strategy would provide the additional benefit of a more precise
determination of the end-point of the NEQ regime. Unfortunately, its computational
cost is prohibitive, given the turnaround time of a single high-Re run.

For all values of Fr and Re, the wake-averaged half-width LH grows as (x/D)1/3

(figure 7b), as observed in stratified wake experiments of Sp97 regardless of Fr value
and as is also representative of unstratified wakes (Tennekes & Lumley 1972). On
account of the specific initial condition, the 1/3 power law is established from the
beginning of the simulations. Furthermore, it persists for the entire duration of the
simulations, well into the Q2D regime, regardless of Re. Evidently, any Re-driven
variation in flow structure does not appear to influence the wake’s lateral growth rate.
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Figure 7. Evolution of mean centreline velocity, U0, wake half-width, LH , and half-height,
LV , for all simulations: (a) U0(x/D), (b) LH (x/D), (c) LV (x/D), (d ) U0(Nt), (e) U0(Nt) with
Fr = 16 and 64 rescaled by factors of 0.4 and 0.16, respectively, and (f ) LV (Nt). Dashed lines
represent power laws observed in the laboratory experiments of Spedding or proposed by
Meunier et al. (2006). Line legend is given in (a). The thin vertical lines delineate transition
points between regimes as identified in the low-Re experiments of Spedding (1997).
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Similar to LH , for all runs, the wake-averaged half-height LV has a 1/3 growth
rate up to an (x/D) value corresponding to Nt ≈ 2. Beyond this point, LV remains
constant (figure 7c) as the NEQ regime is established. In the low-Re runs, LV begins
to grow again at large values of x/D, which is apparently set by Fr . The scaling
arguments of Meunier et al. (2006) suggest that such a growth is viscously driven
and characterized by a 1/2 growth rate. A least-squares power-law fit to the late-
time growth phase of LV yields an exponent in the range of [0.36, 0.48] across the
different Fr values. However, these exponents are inferred from an interval with
relatively short duration in Nt units. For the current problem configuration, runs to
higher values of Nt are not possible due to vertical confinement effects. Furthermore,
the diffuse inclined spanwise vorticity layers dominating the late-time low-Re wake
(figure 11) exhibit a strong streamwise correlation which would require extremely
long domains to accommodate a sufficient number of such flow structures and extract
any meaningful statistics. Now, in all high-Re runs, LV has a constant value starting
at Nt ≈ 2 and extending to the end of the simulation. Late-time oscillations are
directly linked to the small number of coherent structures in the streamwise direction
(figure 11).

In terms of Fr scaling of the near-constant value of LV in the NEQ regime, a natural
choice would be that LV scales as Fr1/3 (figure 7f ), as also proposed by Meunier
et al. (2006). However, the empirical value of Fr1/4, significantly removed from the
Fr0.6 scaling proposed by Sp02, was found to collapse the data even better. This lack
of agreement between LES and self-similarity model and experiments indicates that
any numerically computed early-time value of LV cannot be truly claimed to be an
independent outcome of the LES instead of an actual input.

Although it has not been possible to determine the exact temporal location of
the break-point for the transition from NEQ to Q2D dynamics, the persistence of
constant LV and the prolonged interval of reduced decay rates of U0 at high-Re
clearly indicate a Reynolds number dependence in wake dynamics. Dommermuth
et al. (2002) (their figures 5 and 6) also report similar behaviour for U0 and LV but do
not investigate it in detail. An examination of the development of the vorticity field
structure across the full range of Re and Fr values can provide critical insight towards
understanding the mechanism underlying this Re-dependence. Similar observations
have been made by Brucker & Sarkar (2010) who associated the particular behaviour
of U0 and LV in the NEQ regime with a decay rate of the turbulent kinetic energy
dissipation rate with inertial, and not viscous, scaling but deferred further discussion
to future work.

5.2. Vorticity field

Contour plots of the vertical vorticity ωz on the Oxy centreplane of the flow (sampled
at times Nt = 1, 10, 30, 70, 160, 400 and 1100) are shown in figures 8 and 9. The
R5F4 results are qualitatively similar to those observed in the laboratory (Sp97) and
DNS/LES (Gourlay et al. 2001; Dommermuth et al. 2002) at comparable Re and Fr .
The early-time vorticity field has a structure characteristic of a non-stratified wake.
By Nt ≈ 30, the ωz field transitions into a more organized structure with pancake
vortices beginning to emerge. Subsequently, the wake grows in the spanwise direction
through pairing interactions among like-signed vortices and through diffusion. A
vortex pairing event is discernible in the left end of the domain, at Nt = 160. The
low-Re ωz fields for Fr =16 and 64 (not shown here for the sake of economy) have a
similar structure. In agreement with Sp97, at a given Nt value, higher Fr is associated
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Nt = 70(a)

(b)

(c)

(d)

Nt = 30 Nt = 10 Nt = 1

Figure 8. Contour plots of ωz sampled at different times on a 262
3
D × 131

3
D subsection of

the Oxy centreplane for simulations: (a) R5F4, (b) R100F4, (c) R100F16 and (d ) R100F64.
The sphere travels from left to right. At each snapshot, the colour bar is rescaled locally, and
symmetrically, about ωz = 0 to ±(|ωmax

z | + |ωmin
z |)/2 . The minimum/maximum range for the

colour bar for ωz/(U/D) at Nt = 70 for each simulation is (a) [−0.12, 0.12], (b) [−0.31, 0.31],
(c) [−0.18, 0.18] and (d ) [−0.012, 0.012].

with late-time coherent vortices of larger horizontal length scale (when normalized
with the sphere diameter D).

At Re =105, the very early-time (Nt = 1) ωz field has significantly more fine-scale
structure as compared with its low-Re counterpart. If one now focuses on the R100F4
case, a larger-scale vortical structure, a precursor to pancake formation, is visible in
the contours of ωz by Nt =30. However, persistent finer-scale motions are visible
within this footprint of the pancake vortices. The smooth drop-off of the spectra in
figure 5 strongly indicates that these finer-scale motions are physically driven and not
numerical noise driven by under-resolution.

With increasing Fr (i.e. in runs R100F16 and R100F64), the ωz field at a given Nt

occupies a broader spanwise extent, in agreement with figure 7(b). A very rich fine-
scale structure is also present at Nt = 30 for both Fr =16 and 64 at Re =105. Starting
at Nt = 70 and 50 for Fr = 16 and 64, respectively, striations inclined obliquely to the
wave axis are visible. The peaks in these striations are separated by 8–16 grid points
and the corresponding streamwise spectra are similar to those in figure 5, i.e. show
no tendency for spuriously generated blockage (Boyd 2001), proving that such flow
structure is indeed physical.

Figures 10 and 11 show the spanwise vorticity ωy , sampled over a sub-window
on the Oxz centreplane of the flow at times Nt = 1, 30, 50, 70, 100 and 200. The
size of the visualization window is chosen as such to best illustrate characteristic
features of the spanwise vorticity field, i.e. the inclined shear layers and, at high Re,
any resulting coherent vortex structures. At Nt =1, the R5F4 case has a ωy field
typical of active three-dimensional turbulence which gradually, through the effect
of buoyancy, transitions into a structure characterized by distinct inclined layers,
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Nt = 1100 Nt = 400 Nt = 160(a)

(b)

(c)

(d )

Figure 9. The same as in figure 8, but with snapshots sampled at later times of wake
evolution and with Oxy centreplane subsection dimensions of 26D × 262

3
D.

symmetrically positioned with respect to the wake centreline. Weak undulations are
visible along these layers at Nt =30 but they quickly disappear as the layers become
more diffuse and stable to any shear instability. The inclination of these diffuse shear
layers increases with time due to the enhanced advection of vortex lines by the mean
flow at the wake centreline with respect to the periphery (Sp02). The structure of the
low-Re ωy fields for Fr = 16 and 64 (not shown here) evolves in a similar manner, as
previously reported by Sp02. At Nt ≈ 40, the ωy field is dominated by inclined diffuse
layers. In agreement with the low-Re scaling originally proposed by Godoy-Diana,
Chomaz & Billant (2004), the layer thickness does not demonstrate an Fr-dependence
and appears to be controlled strictly by viscosity.

The early-time ωy fields for all high-Re simulations have an actively turbulent
structure which also transitions into an arrangement of inclined shear layers by
Nt = 30. However, these shear layers are much thinner than their low-Re counterparts
and have a much higher magnitude of ωy . Moreover, at a given value of Fr and Nt ,
the high-Re wake has a larger number of layers inside the wake core.
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(a)

(b)

(c)

(d)

Figure 10. Contour plots of ωy on a 6D × 6D subsection of the Oxz centreplane for
simulations: (a) R5F4, (b) R100F4, (c) R100F16 and (d ) R100F64. Times shown (from right
to left) are Nt =1, 30 and 50. As in figure 8, the sphere travels from left to right. White arrows
point to distinct Kelvin–Helmholtz instabilities. At each snapshot, the colour bar is rescaled
locally, and symmetrically, about ωy = 0 to ±(|ωmax

y | + |ωmin
y |)/2. The minimum/maximum

range for the colour bar for ωy/(U/D) at Nt = 50 for each simulation is (a) [−0.36, 0.36],
(b) [−1.25, 1.25], (c) [−0.32, 0.32] and (d ) [−0.1, 0.1].

Focusing now on the R100F4 case, significant finescale disturbances are embedded
within the shear layers, possibly a residual of the highly energetic initial turbulence.
These disturbances are often organized in near-circular coherent patches. An even
more visibly organized vorticity structure has emerged at Nt = 70 in the form of



Stratified turbulent wakes at high Reynolds numbers 77

(b)

(c)

(d)

(a)

Figure 11. The same as in figure 10, but with snapshots sampled at Nt = 70, 100 and 200.

secondary Kelvin–Helmholtz instabilities. Such secondary instabilities are found to
occur until Nt ≈ 100. Weak undulations still develop along the layers at as late
as Nt ≈ 200, beyond which the layers evolve into a stable configuration with their
thickness growing due to viscous diffusion.

A similar qualitative picture is observed for the R100F16 and R100F64 cases,
although identifiable quantitative differences do exist across Froude numbers. At all
Nt values examined, the strength of the shear layers diminishes with increasing Fr ,
whereas their thickness appears to increase. Secondary Kelvin–Helmholtz instabilities
are also observed until Nt ≈ 100 but, by Nt = 200, the remaining inclined shear layers
are more stable than their Fr = 4 counterparts at high Re.
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(a)

(b)

(c)

Figure 12. Contour plots of ωy at select times showing Kelvin–Helmholtz instabilities
(indicated by white arrows in figures 10 and 11) on a 3D × 1.2D subsection of the Oxz
centreplane for simulations: (a) R100F4 (Nt = 70), (b) R100F16 (Nt = 50) and (c) R100F64
(Nt = 30). Colour bar and sphere motion are the same as in the corresponding panels of figures
10 and 11.

It is noteworthy though that the emergence of distinct secondary Kelvin–Helmholtz
instabilities, in the form of visible billows standing out against any residual turbulent
fine structure, occurs at earlier times with increasing Fr . Figure 12 shows zoomed
views of the instability events indicated by a white arrow in figures 10 and 11. These
Kelvin–Helmholtz billow trains are concentrated near the planes of maximum vertical
shear (see figure 14) with each train consisting of three to five billows.

Contour plots of w sampled over one of the planes of maximum vertical shear
(see figure 14) at times Nt = 30 and 70 for case R100F4 (figure 13; cases R100F16
and R100F64 exhibit similar behaviour) show that the secondary instabilities are
organized in localized concentrations of high w-velocity of bands of alternating signs, a
characteristic signature of Kelvin–Helmholtz billow trains. Normalization with the
corresponding mean centreline velocity at the specific times identifies events where
w/U0 ≈ ±0.2 and w/U0 ≈ ±0.1 at Nt = 30 and Nt =70, respectively. These events are
clearly capable of driving significant local vertical transport. Two-dimensional vertical
transects normal to the axis of the w-velocity contour bands are found to show the ho-
rizontal vorticity structure typical of Kelvin–Helmholtz instabilities shown in figure 12.
When observed over time, these striations are not found to propagate into the far
field of the wake and their w-velocity magnitude is much larger than that of wake-
radiated internal waves (Bonneton et al. 1993). Both these observations indicated that
the striations under consideration should not be misconstrued as internal waves.

For the high-Re values considered here, 20–40 vertical grid points are found to span
the thickness of the shear layers visible at Nt ≈ 30 for Fr = 4 and 64, respectively.
In addition, 40–60 vertical grid points span individual Kelvin–Helmholtz billows at



Stratified turbulent wakes at high Reynolds numbers 79

–0.50

(a)

(b)

–0.4 –0.2 0.2 0.40
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Figure 13. Contour plots of vertical velocity for simulation R100F4 at times Nt = 30 (a) and
70 (b) normalized by the respective value of the mean centreline velocity U0. Contours are
shown on a 262

3
D × 131

3
D subsection of the Oxy plane centred on the wake centreline and

sampled at the location of the lower peak of the corresponding mean-squared vertical shear
profile in figure 14. The patches of striations of alternating sign, slightly offset from the wake
centreline and inclined obliquely to it, correspond to billows of secondary Kelvin–Helmholtz
instabilities, as also observed in figure 9 of Riley & de Bruyn Kops (2003) and figure 4 of
Hebert & de Bruyn Kops (2006).

all Fr values. The horizontal dimension of these billows is resolved with 10 to 16
streamwise grid points. These observations of flow feature resolution and the structure
of the spectral filter functions in figure 4 indicate that the primary two-dimensional
stage of the Kelvin–Helmholtz instability and the pairing between successive billows
are well-resolved.

For the resolutions reported above, features of the subsequent nonlinear evolution
of the observed secondary Kelvin–Helmholtz instabilities, i.e. the formation of braids
between successive billows and the transverse instabilities and transition to turbulence
within an individual billow, are either marginally resolved or totally unresolved and,
thus, controlled by the spectral filter. It is the spectral filter that ultimately drives
the dissipation of the energy within these secondary motions. Since this dissipation
is effectively balanced out by the flux of energy to unresolved scales, driven by the
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Kelvin–Helmholtz billows, which are well-resolved with a highly accurate spectral
discretization, the numerically replicated evolution of the secondary instabilities is
deemed accurate for the scope of this study, i.e. demonstrating that formation of
secondary Kelvin–Helmholtz instabilities is indeed possible within the core of a
stratified turbulent wake at sufficiently high Re. Given the high-Re run times reported
in § 4, a sensitivity study of the effect of the spectral filter order and possibly
enhanced resolution on the full nonlinear evolution of the localized Kelvin–Helmholtz
instabilities is not within available computational resources.

5.3. ‘Stratified turbulence’ and buoyancy-driven shear in high-Re wakes

The larger-scale quasi-horizontal motions and secondary instabilities and turbulence
embedded therein, observed in the high-Re stratified wakes of § 5.2, are similar to the
flow structure reported in the numerical investigation of RdBK, Waite & Bartello
(2003), Laval et al. (2003), Winters et al. (2004), Brethouwer et al. (2007) and Deloncle
et al. (2008). The mechanism responsible for these secondary events appears to be the
gradual decorrelation of horizontal layers in a high-Re stratified environment which
leads to localized regions of intensified vertical shear, as proposed by Lilly (1983).
One favourable pathway towards this flow state, which is highly prone to shear
instability, is the zigzag instability of a pair of counter-rotating columnar vortices
(Billant & Chomaz 2000a ,b). Furthermore, Majda & Grote (1997) showed that a
pre-existing vertical shear will be intensified in a stable density gradient and, thus,
the Kelvin–Helmholtz waves and instabilities seen here could develop faster through
such a mechanism. In contrast to the previous numerical studies of RdBK, Winters
et al. (2004), Brethouwer et al. (2007) and Deloncle et al. (2008), however, we note
that the tendency towards layer decorrelation and intensification of vertical shear in
a stratified wake is not pre-set as part of the initial conditions, but emerges from
the initial turbulent conditions, much as it does in the laboratory and presumably, in
nature. To this end, the initial conditions of Waite & Bartello (2003) and Laval et al.
(2003) are indeed turbulent but, on account of their statistically homogeneous nature,
do not correspond to a canonical localized turbulent flow.

The vertical distribution and magnitude of buoyancy-driven vertical shear in a
stratified wake and its dependence on Re and Fr are best quantified through the
analysis followed by RdBK. Specifically, the horizontally averaged mean-squared
vertical shear, S2(z) is defined as

S2(z) =

〈(
∂u

∂z
+

∂v

∂z

)2〉
H

, (5.1)

where 〈 · 〉H represents averaging over the interval [0, Lx] and across a transverse inter-
val [−2LH, 2LH ] on the Oxy centreplane. The evolution of S2(z) is shown in figure 14
for case R100F4, and S2(z) peaks always at z/D ≈ ± 0.2, which nearly coincides with
the location of maximum vertical shear of the mean velocity profile UX(y, z). It is
at these locations where the most vigorous secondary Kelvin–Helmholtz instabilities
occur (such as those shown in figure 12). The peak value of S2(z) diminishes rapidly
at early times but, starting at Nt = 30, decays at a slower rate, with its vertical extent
being progressively restricted to the Oxy centreplane. This observation is consistent
with the increased localization of any secondary instabilities to the immediate vicinity
of this centreplane as time advances. At the higher-Fr values for Re = 105, S2(z) (not
shown here) evolves in a manner similar to figure 14, the main difference being a
reduction of the peak values with increasing Fr at given Nt . Finally, for a given
Fr value, the S2(z) profile (not shown here) for the lower-Re simulation has a peak
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Figure 14. Profile of the mean square vertical shear for case R100F4 as a function of time.
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Figure 15. (a) Evolution of the mean square vertical shear integrated over the volume of the
wake. (b) Same quantity but rescaled with Fr2/Re according to scaling proposed by Riley &
de Bruyn Kops (2003) and Spedding (2002).

that occurs at a comparable location, with somewhat greater offset from the wake
centreline, but diffuses out much faster than its high-Re counterpart.

The Re- and Fr-dependence of the magnitude of buoyancy-driven shear is best
illustrated by further averaging S2(z) in the vertical direction over a window
[−2LV , 2LV ] (figure 15a). At a given Fr , from the onset of the simulations up
to Nt ≈ 10, the higher Re exhibits an average shear magnitude squared that is a
factor of 15–20 greater than the corresponding low-Re value. At a given Re, for
Nt > 10, increasing Fr corresponds to weaker shear magnitude.

A scaling may now be sought to collapse the time series in figure 15(a). Stratification
may be accounted for through the Fr−2 scaling proposed by Sp02. The effect of
Reynolds number may be addressed by following RdBK. The contribution of the
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vertical shear to the dissipation term in the kinetic energy equation may be written as

1

Re

〈(
∂u

∂z
+

∂v

∂z

)2〉
=

1

Re
S2, (5.2)

where the operator 〈 · 〉 indicates averaging over the volume of the wake (as defined
by the window [−2LH, 2LH ] × [−2LV , 2LV ] centred on the wake centreline). The
fully resolved DNS of RdBK obtained an accurate estimate of the kinetic energy
dissipation rate which, upon the establishment of stratified turbulence, was found
to be independent of Re. RdBK further suggested that S2/Re is also approximately
independent of Re. Assuming that this Re-independence also holds in the wake
simulations considered here, the volume-averaged mean-squared vertical shear (the
term in the brackets on the left-hand side of (5.2)) scales with Re. Such a scaling was
also proposed by Praud, Fincham & Sommeria (2005) for stratified turbulence at suffi-
ciently high Reynolds numbers. Thus, the appropriate scaling that combines the effect
of both stratification and Reynolds number is Re/Fr2. As is evident in figure 15(b),
this scaling provides a satisfactory collapse of the S2 time series across all cases,
for 30 <Nt < 200, the interval which is characterized by the emergence of stratified
turbulence and the subsequent transition into the Q2D regime.

5.4. ‘Stratified turbulence’ diagnostics

Having quantified the dependence of buoyancy-driven shear on Re and Fr , one may
now assess its ability to generate Kelvin–Helmholtz instabilities by examining the
local Richardson number Riloc:

Riloc =

−g

ρ0

∂ρT

∂z(
∂u

∂z

)2

+

(
∂v

∂z

)2
, (5.3)

where ρT (x, y, z, t) = ρ(z)+ρ ′(x, y, z, t). Figure 16 contrasts contours of |Riloc | on the
Oxz centreplane between runs R5F4 and R100F4 at time Nt = 30. In the low-Re
case, there are very few bands of |Riloc | < 1 with a near-negligible number of regions
of |Riloc | < 1/4, where shear instability is likely. Any such regions rapidly disappear at
subsequent times. The high-Re simulation, however, shows a proliferation of streaks
with |Riloc | < 1/4, which are concentrated along the planes of maximum vertical shear.

Figure 17 shows the time series of RiH , which is the average of the horizontally
averaged values of Riloc at each of the two planes of maximum vertical shear
(Hebert & de Bruyn Kops 2006). RdBK recommend RiH < 1 as an approximate
criterion for secondary instabilities and turbulence to develop on average throughout
the flow. All low-Re curves cross this threshold value at Nt =10, when buoyancy
has not yet had the chance to organize the vorticity field into horizontal layers. In
contrast, the high-Re curves collapse across all Fr and exceed the critical value of
RiH at some point in the interval 100 <Nt < 200, an observation consistent with the
persistence of secondary instabilities shown in figures 10 and 11.

As proposed independently by the scaling arguments of RdBK and Billant &
Chomaz (2001), a criterion equivalent to RiH < 1 for the development of shear
instability, and therefore stratified turbulence, is ReHFr2

H > 1, where ReH and FrH

are appropriately defined local horizontal Reynolds and Froude numbers, respectively.
Specifically, ReH ≡ uH lH/ν and Fr ≡ uH/(lHN). In this study, the characteristic
horizontal velocity uH and horizontal length scale lH are computed through a slight
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Figure 16. Contour plots at Nt = 30 of the absolute value of the local Richardson number,
|Riloc |, on a 262

3
D × 2D subsection of the Oxz centreplane. (a) R5F4 and (b) R100F4. (c) A

zoomed view of the region delineated by the dashed line in (b). (d ) Profile of mean square
vertical shear at that time (as also shown in figure 14).
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Figure 17. Evolution of the wake volume-averaged local Richardson number, Riloc .

variation of the procedure outlined by Hebert & de Bruyn Kops (2006). Based on the
decomposition of (3.1) and the premise that the quasi-horizontal motions driving
the vertical shear originate from perturbations to the mean flow, uH is defined as
the average of the r.m.s. values of horizontal fluctuating velocity computed over the
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Figure 18. (a) Evolution of ReH Fr2
H . (b) ReH Fr2

H as a function of Riloc . The dashed line
represents the −1 power law observed by Hebert & de Bruyn Kops (2006).

two planes of maximum vertical shear. The length scale, lH , is computed from the
zero-crossing of the autocorrelation function:

R(r) =
1

2

〈u′(x + r)u′(x)〉H

〈u′〉H

+
1

2

〈ωz(y + r)ωz(y)〉H

〈ωz〉H

, (5.4)

with

lH = r for R(r) = 0. (5.5)

The first term on the right-hand side of (5.4) represents the autocorrelation of the
fluctuating streamwise velocity u′ in the x-direction and the second term represents
the autocorrelation of the vertical vorticity ωz in the y-direction. The subscript H

represents averaging of the streamwise and spanwise autocorrelations over the planes
of maximum vertical shear. Computation of the x-autocorrelation necessitates removal
of the mean velocity whose x-independence precludes the presence of a zero-crossing
in the correlation function. At a given x-location, on account of the influence of the
mean flow, the v-velocity tends to maintain a fixed sign in the transverse direction.
Thus, ωz enables a more reliable estimate of the y-autocorrelation.

Figure 18(a) shows the evolution of ReHFr2
H for all cases. The characteristic

horizontal velocity, uH , and length scale, lH , evolve to maintain a near-constant value
of ReH throughout the entire simulation, in agreement with Hebert & de Bruyn Kops
(2006). Note that Re = 5 × 103 and 105 have ReH ≈ 100 and 2 × 104, respectively. For
all cases, FrH quickly drops below unity at Nt ≈ 2 and continues to decrease steadily
with all curves collapsing for Nt > 10. Thus, the development of ReHFr2

H in time
is set by the initial value of ReH . Figure 18 shows that ReHFr2

H > 1 holds for the
low-Re data only up to Nt ≈ 10. In contrast, ReHFr2

H > 1 for all high-Re runs until
Nt ≈ 200, in agreement with figure 17. Moreover, as in the high-Re time series in
figure 17, ReHFr2

H curves appear to collapse for Nt > 10 at high Re. The one-to-
one correspondence in the occurrence of critical value transitions in figures 18(a)
and 17 suggests that, in accordance with the original scaling arguments of RdBK,
ReHFr2

H ≈ Ri−1
H , which appears to be confirmed by figure 18(b). Excluding all points

with RiH < 0.1, which correspond primarily to the 3D regime where non-stratified



Stratified turbulent wakes at high Reynolds numbers 85

Nt

〈w
2 〉/

(2
U

2 )

10–1 100 101 102 103

Nt
10–1 100 101 102 103

10–2
(a) (b)

100

10–1

10–2

10–3

10–4

10–5

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

Re = 5 × 103, Fr = 4
Re = 5 × 103, Fr = 16
Re = 5 × 103, Fr = 64
Re = 105, Fr = 4
Re = 105, Fr = 16
Re = 105, Fr = 64

〈w
2 〉/

(〈u
′2 〉

 +
 〈v

2 〉)
Figure 19. (a) Evolution of the wake volume-averaged vertical kinetic energy. (b) Same

quantity but normalized by the wake volume-averaged horizontal kinetic energy.

dynamics dominate, a least-squares fit of FrHRe2
H ≈ Riα

H yields an average exponent
for all six cases of α = 1.18 ± 0.05.

These results further support the suggestion of Hebert & de Bruyn Kops (2006)
that ReHFr2

H provides a reliable estimate for the local Richardson number and may
be therefore used as an alternative indicator for stratified turbulence when only
horizontal but no vertical measurements are available. Note also that the use of U0

(or the horizontally averaged value of the total instantaneous horizontal velocity)
and LH as characteristic horizontal velocity and length scales, respectively, is found
to significantly overestimate both ReH and FrH in such a way that ReHFr2

H =1 is
observed at a time which is long after any secondary events have occurred in the flow.

5.5. Vertical kinetic energy of the intermediate-to-late-time wake

The enhanced buoyancy-driven vertical shear and resulting secondary instabilities
and turbulence of the high-Re wakes are expected to be associated with enhanced
vertical velocities and isopycnal overturning. Figure 19(a) provides further evidence
for the above behaviour in high-Re stratified wakes, which shows the evolution of
the average vertical kinetic energy, 〈w2〉/2, integrated over the wake volume (as
defined by the rectangular volume centred on the wake centreline with a cross-
section of [−2LH, 2LH ] × [−2LV , 2LV ]). For 30 <Nt < 100, at a given Fr , the vertical
kinetic energy of a high-Re wake is a factor of 8–15 greater than that of its low-Re
counterpart.

In figure 19(b), 〈w2〉/2 is normalized by the wake-integrated horizontal fluctuating
kinetic energy 〈u′2〉/2 + 〈v2〉/2, which, in agreement with RdBK, is found to have
only a weak dependence on Re. At each Re, the normalized curves collapse quite
well across different Fr . Upon completion of relaxation (not shown here), the ratio
〈w2〉/(〈u′2〉 + 〈v2〉) is exactly equal to 1/2, corresponding to equipartition of kinetic
energy across all three components (see § 3.2). The time series of figure 19(b) are
sampled as soon as the transition run has ended. At this point, although 〈w2〉/〈v2〉
is very close to unity, 〈w2〉/〈u′2〉 lies in the range of [0.3, 0.8], as it is likely that
significant production of streamwise velocity fluctuations has occurred during the
transition run. The Fr = 4 cases showed the lowest values of 〈w2〉/〈u′2〉, presumably
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due to the stronger effect of stratification during the transition run. The initiation
of the decay of 〈w2〉/(〈u′2〉 + 〈v2〉) at Nt ≈ 10 is consistent with the experimental
observations of Sp02 (see his figure 12b).

In the high-Re wakes, for 30 < Nt < 200, 〈w2〉/(〈u′2〉 + 〈v2〉) can be as much as
20 times larger than the corresponding low-Re value. Nonetheless, 〈w2〉/(〈u′2〉 + 〈v2〉)
lies in the range of [0.003, 0.05], suggesting that the vertical motions associated with
secondary events may not contribute significantly to overall wake dynamics. Such
an argument is likely to be weakened with increasing Re, as the enhancement of
buoyancy-driven shear would provide for more vigorous (and possibly more space-
filling) secondary instabilities and ensuing turbulence.

6. Discussion
6.1. Reynolds and Froude number scaling

The Re/Fr2 scaling identified in § 5.3 and figure 15(b) may be interpreted as follows.
Although stronger stratification is commonly associated with enhanced suppression
of vertical motion, it provides for enhanced vertical shear in the intermediate-to-late
wake, as it biases the flow towards stronger vertical velocity gradients (Fincham et al.
1996; Diamessis & Nomura 2000). At lower Re, viscosity diminishes the magnitude
of the vertical shear which is distributed over layers of a greater thickness and has
a considerably slower growth rate of the Kelvin–Helmholtz instability. Moreover, the
weaker shear is responsible for higher values of the local Richardson number and
reduced potential for secondary instabilities (see § 5.4). In the same vein, although
case R5F4 has comparable and even stronger shear than the high-Re runs at Fr = 16
and 64 (figure 15b), the latter two operate against a noticeably weaker stratification
and can therefore support secondary instabilities. Finally, at a fixed Re, the weaker
shear magnitude observed with increasing Fr may be attributed to having viscosity
operating over a longer window (in x/D) within the wake core before buoyancy can
establish a layered structure.

Given the collapse of all ReHFr2
H curves at a given Re for Nt > 10 (figure 18a) and

the scaling of the mean-squared shear with Re (figure 15b), it is reasonable to expect
that the critical value of RiH (and, therefore, ReHFr2

H ) will be attained at later times
with increasing Re, i.e. secondary instabilities and turbulence will persist for an even
longer time. Thus, at a given Nt during the NEQ regime, higher Re will correspond to
lower values of RiH . In this case, the enhanced shear will provide for more vigorous
and possibly more space-filling secondary events, which may establish even higher
levels of vertical kinetic energy than those shown in figure 19.

The collapse of the high-Re ReHFr2
H time series for Nt > 10 (figure 18a) merits

further discussion. First, it indicates that at a given sufficiently high Re, the turbulence
inside a stratified wake self-organizes in such a way that it evolves in an Fr-
independent manner throughout the entire NEQ regime. Such behaviour should
hold for other strongly stratified turbulent flows near or within the inviscid limit and
is directly linked to the theoretical predictions of self-similarity of Billant & Chomaz
(2001). Note that multiplying the vertical axis of figure 18(a) with 1/Re yields only
a partial collapse of the time series. Thus, further analysis is required to determine
the high-Re scaling of the ReHFr2

H time series. Such a scaling would enable the
construction of a universal curve for ReHFr2

H (Nt) and the exact determination of its
unity-crossing point as a function of Re and Fr .

Hebert & de Bruyn Kops (2006) have shown that ReHFr2
H is equivalent to

the buoyancy Reynolds number, Reb = ε/(νN2), a quantity commonly used in the
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oceanographic literature as a measure of the scale separation between the largest
(Ozmidov) and smallest (Kolmogorov) scales (Ivey & Imberger 1991). The collapse of
the ReHFr2

H times series at high Re in the NEQ regimes indicates that, at a particular
value of Nt , this scale separation is independent of Fr and the turbulent kinetic
energy dissipation rate is set by N2, i.e. the stratification.

6.2. Universality of secondary events and fine structure disappearance

A characteristic signature of the secondary instabilities and turbulence is the fine
structure embedded within a larger-scale background vortical motion (figure 8). As
indicated in § 5.2, a similar signature has been observed in a number of simulations of
other high-Re strongly stratified flows with more idealized initial conditions (Waite &
Bartello 2003; Brethouwer et al. 2007; Deloncle et al. 2008). This similarity suggests
that this type of vorticity field structure is a universal feature of highReynolds-number
stratified flows, regardless of the exact initial conditions. All that is required is the
presence of a strong vortical mode (Riley & Lelong 2000) that is either inherent in
the initial condition (Waite & Bartello 2003) or develops naturally during the flow
evolution, as is the case with a stratified wake.

Curiously enough, however, this type of fine structure is not observed within the
pancake vortices reproduced by the Re = 105 wake simulations of Dommermuth et al.
(2002), with the pancakes showing a visibly diffuse structure as early as Nt =50. Such
behaviour may be attributed to the enhanced artificial dissipation of their SGS model
and the reduced resolution in the vertical direction of the particular study (see § 4). On
the contrary, in the high-Re simulations presented here, the fine structure disappears
at much later times. Specifically, the fine structure vanishes by Nt ≈ 300, 160 and 70
for Fr = 4, 16 and 64, respectively, times which are quite close to when ReHFr2

H ≈ 1.

6.3. Self-similarity modelling of high-Reynolds-number stratified wakes

The observations of high vertical kinetic energy focused in spatio-temporally
intermittent bursts of turbulence in the mid-to-late-time stratified wake suggest that
the assumption of Meunier et al. (2006) of zero vertical transport in a stratified
wake for Nt � 2 may be too stringent for sufficiently high Re. Whereas the condition
FrH,m = U0/(LH N) ≈ 1 (where FrH,m is a horizontal Froude number defined through
the mean profile) does indeed signal the onset of the NEQ regime, it does not
automatically correspond to suppression of vertical transport. A more accurate
condition for the onset of this suppression would be ReHFr2

H =1, adjusted by a
multiplicative factor if mean velocities and length scales are used (see § 5.4).

6.4. Implications for the field: intermittency and horizontal spectra

The spatio-temporal intermittency of the secondary instabilities and turbulence
additionally suggests that a similar process may be responsible for the episodic
nature of turbulent events in the stratified open ocean (Thorpe 2005). Observations
of turbulent microstructure in an environment with strong background shear (Itsweire,
Osborn & Stanton 1989) may correspond to secondary bursts feeding off the mean
shear of a larger-scale original event (which from its onset, or subsequently in
its evolution, is associated with a strong vortical mode), as is the case here. In a
similar geophysical context, the decade-wide k−5/3

x inertial range seen in the mid-
to-late-time streamwise kinetic energy spectra of stratified wakes (figure 5), also
reported by RdBK and Brethouwer et al. (2007) (who both, nevertheless, used
more idealized initial conditions), is directly linked to buoyancy-driven secondary
instabilities and turbulence which drive a Kolmogorov-like forward energy cascade
in strongly stratified high-Re turbulent flows (Linborg 2006). The observation of this
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spectral signature in a localized canonical flow with turbulent initial conditions, such
as a towed-body wake (more evolved variants of which are common in the ocean
and atmosphere, as discussed in § 1.1), provides additional support to the claims of
Riley & Lindborg (2008). Specifically, they suggest that stratified turbulence may be
the physical process underlying a number of observations of −5/3 horizontal spectral
slope in the ocean and atmosphere, where the turbulence is presumed to be organized
in highly oblong layers (much like the geometry of the wake in the NEQ regime)
extending over O(10 km) to O(100 km) in the horizontal.

6.5. Vertical transport in a localized stratified turbulent flow

At sufficiently high initial Reynolds numbers, the original turbulence is not completely
suppressed by buoyancy but is partially reactivated through the buoyancy-enhanced
vertical shear. If indeed the secondary turbulence persists up to Nt ≈ O(103) from
the formation of the original turbulent event, the implications for estimating vertical
transport coefficients are significant. A preliminary analysis of the high-Re data
sets considered here (Diamessis 2010) has shown that the wake-averaged vertical
Reynolds stress magnitude scales with the corresponding wake-averaged horizontal
turbulent kinetic energy. Furthermore, vertical eddy viscosities computed at high Re
on the planes of maximum vertical shear (figure 14) are almost 10 times larger
than their molecular counterpart at Nt = 30, when all vertical motions and turbulent
transport are commonly expected to have fully subsided. At even higher Re, based
on the discussion of § 6.1 on the expected enhancement of the associated buoyancy-
driven shear and resulting turbulence, the ratio of vertical viscosity to its molecular
counterpart is likely to have even larger values and to persist well above unity at
much later times.

7. Concluding remarks
Spectral multi-domain-based implicit LES of the stratified turbulent wake of a

towed sphere have revealed a significant dependence of wake similarity scaling
and underlying flow structure on the sphere-based Reynolds number, Re. As Re
is increased, a distinct prolongation of the NEQ regime takes place, as evidenced
by the persistence time of slower decay rates of the mean wake kinetic energy. As
the mean wake height remains near constant, the wake continues to expand in the
horizontal, establishing a more oblique wake cross-section. Within the wake core,
buoyancy drives the development of quasi-horizontal motions and the reorganization
of the original three-dimensional turbulent vorticity field into distinct horizontal
layers with strong vertical shear. The strength of these pronounced shear layers
increases with Re, whereas their thickness is reduced, leading to higher susceptibility
to Kelvin–Helmholtz instability. Somewhat counterintuitively, the tendency towards
shear instability is enhanced with decreasing internal Froude number, Fr (for any value
of Fr � 4). At Re = 105, the persistent secondary instabilities and resulting turbulence
survive until Nt ≈ 100 and can drive significant vertical motions, leading to over-
turning at times when buoyancy is commonly expected to have fully suppressed the
original turbulence. The strength of the buoyancy-driven vertical shear sustaining
the secondary instabilities and turbulence scales as Re/Fr2. This scaling along with
the description of the state of the stratified turbulence in the NEQ regime at a
given high Re by an Fr-independent ReHFr2

H curve (ReH and FrH are turbulent
horizontal Reynolds and Froude numbers, respectively) enables the prediction of the
strength and persistence time of these secondary motions. Although the secondary
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events appear to be intermittently embedded within larger-scale vortical modes, the
emergence of diffuse pancake vortices, similar to those observed in previous low-Re
experiments, is significantly delayed with increasing Re. This is the first systematic
observation and characterization of such secondary events in a controlled laboratory
or numerical experiment with a realistic turbulent initial condition.

At their core, the results presented here motivate a re-examination of the commonly
perceived life cycle of a localized stratified turbulent patch. Furthermore, the presence
of a persistent highly energetic NEQ regime (lasting up to Nt ≈ O(103) or even longer
at geophysical values of Re) that intervenes between the 3D and Q2D regimes is very
likely to stimulate a reconsideration of the existing parametrizations of stratified
turbulence and mixing in the ocean and atmosphere and an alternative interpretation
of spectra sampled in the field. Finally, from a naval hydrodynamics standpoint,
significant implications arise in terms of the long-time signature of submerged body
wakes and the formulation of relevant predictive modelling tools.
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Appendix A. Setting the initial wake length scales/velocities
To allow for a fully three-dimensional initial flow field that transitions smoothly into

the NEQ regime for all Fr ∈ [4, 64], this study seeks a choice of characteristic wake
length and velocity scales in (3.2) and (3.3) that reliably approximate the near wake
at x/D = 2. Beyond this point, the mean wake should transition into a self-similar
evolution by x/D = 6, as indicated by the experiments of Bevilaqua & Lykoudis
(1978). Thus, for all Fr values under consideration, self-similar behaviour throughout
almost the entire the NEQ regime should be expected.

No descriptions are available from past numerical simulations on the structure of
the near-wake mean and fluctuating velocity profiles at the Re values of interest.
However, laboratory data for the near wake are limited to one-dimensional profiles of
UX and u′

x obtained from hot-wire transects through the wake centreline as close as
x/D =0.236 to the body (Bevilaqua & Lykoudis 1978). By assuming axisymmetry and
energy equipartition across all fluctuating velocity components, one may introduce the
Bevilaqua & Lykoudis data into (3.2) and (3.3) to set up initial mean and fluctuating
flow fields for the simulations. Nonetheless, when implementing such initial flow fields
with a value of u0/U0 = 0.4 (as chosen by Dommermuth et al. 2002) in the spectral
multi-domain penalty method solver, self-similar evolution of the mean flow was
found to be spuriously delayed until x/D ≈ 40. Reduction of u0/U0 by as much as a
factor of four did not accelerate the emergence of self-similar behaviour.

Restarting the simulation upon the sudden termination of the relaxation procedure
does constitute an impulsively started problem, i.e. the numerical solution is essentially
shocked. Since the mean and fluctuating profiles are abruptly allowed to evolve,
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transients will develop. Spectral schemes are particularly sensitive to such transients,
in part due to their higher accuracy and minimal and explicitly controlled artificial
dissipation. Non-Fourier higher-order element-based schemes have been found to
be even more sensitive to initialization transients in impulsively started stratified
flow processes, particularly when the initial condition is not an exact solution of
the Navier–Stokes equations (Abdilghanie & Diamessis 2011), with the transients
often persisting for very long times. In the specific flow under consideration,
the initial mean wake profile, constructed by assuming axisymmetry of the one-
dimensional transects of Bevilaqua & Lykoudis (1978), does not satisfy conservation
of momentum as prescribed by Meunier et al. (2006) and, therefore, is not a solution
of the incompressible Navier–Stokes equations. Thus, the observed emergence of an
excessively long adjustment until the onset of self-similar behaviour is not unexpected
in a simulation with the particular spectral multi-domain scheme.

An alternative prescription of the near-wake mean flow is sought to minimize
the transition to self-similar evolution. We therefore assume a self-similar wake as
early as x/D = 2 and select mean and fluctuating velocity profiles prescribed by the
relevant theory at this location (Tennekes & Lumley 1972; Meunier et al. 2006).
This assumption may be justified by this study’s focus: the reproduction of realistic
behaviour upon entry into the NEQ regime and thereafter, and not details of the
near wake.

The expressions for the width/height and centreline velocity of a self-similar
unstratified wake at a given downstream distance x/D are readily given by Meunier
et al. (2006):

LH = LV = Dm

(
3x

8R3Dm

)1/3

, (A 1)

U0 =
U

8

(
3x

8R3Dm

)−2/3

, (A 2)

where R3 is a turbulent Reynolds number and Dm = D
√

CD/2 is defined as a
momentum thickness based on the drag coefficient of the body CD . The values chosen
here are R3 = 4 (Bevilaqua & Lykoudis 1978) and CD = 0.4 (Meunier & Spedding
2004).

No value for u0/U0 is given in Gourlay et al. (2001), and Dommermuth et al.
(2002) do not justify their choice of a value of 0.41, although it is very close to
the value measured by Bevilaqua & Lykoudis (1978). It is also possible that both
of these investigations did not focus on the sensitivity of the numerical results
to u0/U0 as it may have been regarded as inconsequential to the evolution of
the intermediate-to-late wake. The expectation that the initial condition will rapidly
adjust into the intermediate wake behaviour no matter what the choice of u0/U0 is not
totally unreasonable. Note, however, that the wake’s shear-layer profile is convectively
unstable and any amplified disturbance (as represented in an excessively high value
of u0/U0) in the near wake may persist for significant distances downstream (L.
Redekopp, personal communication, 2005). A spectral/spectral-multi-domain solver,
such as that used in this study, is most liable to faithfully reproduce the downstream
persistence of any artificially amplified near-wake disturbances.

Nevertheless, spectral multi-domain LES initialized with mean wake velocity profiles
given by (A 1) and (A 2) were not found to yield a self-similar mean flow immediately
upon the termination of relaxation. Although the onset of mean flow self-similarity
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was accelerated compared to the previous choice of initial mean profile, it was still
not observed until 8 <x/D < 20, the delay increasing with increasing values u0/U0

(chosen in the range of [0.1, 0.4]). Furthermore, fluctuations with u0/U0 < 0.1 were
not energetic enough to become correlated with the mean flow.

Insight into the sensitivity to the choice of u0/U0 may be gained from the laboratory
study of Browand & Latigo (1979), who examined the growth rates of a two-
dimensional shear layer for different levels of turbulence on the top side of the
splitter plate. A turbulent top boundary layer delayed the transition to self-similar
growth as compared with the case of laminar flow over the splitter plate. The
delay was proportional to the levels of turbulent kinetic energy. A possible cause
for this transition was conjectured to be the interaction of the coherent structures
inside the turbulent boundary layer with those characteristic of a monochromatically
driven Kelvin–Helmholtz instability (e.g. billows and braids, Thorpe 2005). Since
self-similarity theory works with a reduced set of equations that does not take into
account the coherent structure that destabilizes the mean flow profile of (3.3), a similar
mechanism may be operative in the wake simulations considered here.

For the production runs described here, to minimize any lag in the onset of self-
similarity, the value of u0/U0 = 0.1 is chosen. This value is equal to that measured
by Bevilaqua & Lykoudis (1978) at x/D = 2. It is also very close to the asymptotic
value of 0.16 observed in all the Browand & Lattigo experiments at O(400) integral
thicknesses from the splitter plate, when self-similarity was well-established in the
evolution of the mean shear-layer velocity profile . The choice of u0/U0 = 0.1 is
found to produce well-correlated fluctuating and mean wake flow fields that become
self-similar in the mean by x/D = 8. Thus, another preliminary run, the ‘transition
run’, operating within the interval 2 <x/D < 8, follows the relaxation run (see
also § 3).

It is at the end of the transition run that the main run begins. However, U0 and LH

change during the transition run, leading to an inevitable reduction of local Reynolds
and Froude numbers, ReL = U0LH/ν and FrL =2U0/(LHN), from their original values
at the end of relaxation. If these values of ReL and FrL are chosen to represent a near
wake presumed to be axisymmetric at x/D = 2, this wake will correspond to lower
values of Re and Fr than those originally intended.

To compensate, the value of U0 used during relaxation is set to be 50 % larger than
that given by (A 2) for x/D = 2. The resulting values of ReL and FrL at the end of
transition differ by only 5 % from their self-similar counterparts for the Re and Fr
of interest at x/D = 2.

Appendix B. Initial wake density field
Beyond the involved process of prescribing the characteristics of the initial mean

wake velocity profile, an additional effort is required towards designating a physically
realistic density field. Gourlay et al. (2001) and Brucker & Sarkar (2010) assumed zero
density perturbations at the beginning of their stratified wake simulations and the
same assumption was made by Dommermuth et al. (2002) for the density field upon
the termination of relaxation. Such a choice of an initial density field was justified in
both studies based on the assumption that the particular details of the initial density
field are inconsequential to the evolution of the intermediate-to-late-time wake.

However, the near wake will clearly drive significant isopycnal stirring and
overturning until x/D = 2. Superimposing an unperturbed stable density stratification
on a velocity field approximating the near wake at x/D = 2 may once again be
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regarded as an impulsively started problem, where the velocity field is shocked with
an externally imposed stratification. Such an approach has typically been used in
DNS of stratified homogeneous turbulence (Jacobitz, Sarkar & Van Atta 1997) and
no issues with detrimental transients have been reported (Diamessis & Nomura 2004).
When this approach was used with the spectral multi-domain solver, the solution was
contaminated by re-stratification-related transients whose most visible signatures were
distinct unphysical oscillations in the wake height with amplitudes which increased
with decreasing Fr and persisted as late as Nt ≈ 50 for Fr = 4. Motivated by the
work of Gerz & Yamazaki (1993), an effort to seed the initial density field with
either random fluctuations or fluctuations generated during the relaxation procedure
by turbulent stirring of the isopycnals – the length scale of the fluctuations set in
both cases as some prescribed percentage of LV – produced even stronger oscillations
in LV .

Given the sensitivity of the spectral multi-domain solver to any unrealistic
assumptions about the initial condition, a transient-free approach was devised that
generates density fluctuations that develop in confluence with the velocity field. The
specific approach was based on the conceptual construct of the wake of a fixed body
in a free stream, where the stratification is gradually ramped-up downstream to the
desired value. In analogy, in the simulations discussed here, during the transition run,
the value of the mean density gradient dρ/dz in (2.3) is ramped-up in a time with a
half-Gaussian until it reaches its maximum value at the end of this preliminary run.
This approach was found to nearly eliminate all re-stratification-related transients
and the evolution of LV was found to agree well with the observations of Sp02.
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